Issue with Stone-II Three Phase Permeability Model, and A Novel Robust Fundamentals-Based Alternative to It

Author:

Gupta Subodh1

Affiliation:

1. Heretech Energy Inc.

Abstract

Abstract The objective of this paper is to present a fundamentals-based, consistent with observation, three-phase flow model that avoids the pitfalls of conventional models such as Stone-II or Baker's three-phase permeability models. While investigating the myth of residual oil saturation in SAGD with comparing model generated results against field data, Gupta et al. (2020) highlighted the difficulty in matching observed residual oil saturation in steamed reservoir with Stone-II and Baker's linear models. Though the use of Stone-II model is very popular for three-phase flow across the industry, one issue in the context of gravity drainage is how it appears to counter-intuitively limit the flow of oil when water is present near its irreducible saturation. The current work begins with describing the problem with existing combinatorial methods such as Stone-II, which in turn combine the water-oil, and gas-oil relative permeability curves to yield the oil relative permeability curve in presence of water and gas. Then starting with the fundamentals of laminar flow in capillaries and with successive analogical formulations, it develops expressions that directly yield the relative permeabilities for all three phases. In this it assumes a pore size distribution approximated by functions used earlier in the literature for deriving two-phase relative permeability curves. The outlined approach by-passes the need for having combinatorial functions such as prescribed by Stone or Baker. The model so developed is simple to use, and it avoids the unnatural phenomenon or discrepancy due to a mathematical artefact described in the context of Stone-II above. The model also explains why in the past some researchers have found relative permeability to be a function of temperature. The new model is also amenable to be determined experimentally, instead of being based on an assumed pore-size distribution. In that context it serves as a set of skeletal functions of known dependencies on various saturations, leaving constants to be determined experimentally. The novelty of the work is in development of a three-phase relative permeability model that is based on fundamentals of flow in fine channels and which explains the observed results in the context of flow in porous media better. The significance of the work includes, aside from predicting results more in line with expectations and an explanation of temperature dependent relative permeabilities of oil, a more reliable time dependent residual oleic-phase saturation in the context of gravity-based oil recovery methods.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3