Numerical Simulation of Enhanced Oil Recovery in the Middle Bakken and Upper Three Forks Tight Oil Reservoirs of the Williston Basin

Author:

Iwere F. O.1,Heim Robin N.1,Cherian B. V.1

Affiliation:

1. Schlumberger

Abstract

Abstract The United States Geologic Survey (USGS) reported in 2008 that undiscovered technically recoverable oil in the Bakken was about 3.6 billion barrels across the U.S. portion of the basin, considering recent successful application of horizontal wells and multistage hydraulic fracturing technologies. As the development of the unconventional resources in the Williston Basin continues beyond the phases of exploration and lease evaluation, optimum well spacing and recovery factor will become forefront considerations in the formulation of asset development strategies. Based on our studies the reservoir producing mechanism is primarily solution gas drive and primary oil recovery factor is lower than 15% of the original oil in-place. This low recovery or very high oil volume remaining in place is a strong motivation to investigate the application of enhanced oil recovery methods in this basin. This paper describes the construction of numerical simulation models using typical fluid and rock properties for the Bakken and Three Forks, assuming both naturally fractured and single porosity systems and their combinations. Multistage hydraulic fracture properties are determined from well completion engineering and coupled with the flow models. The flow models are constrained by well operating practices implemented by operators across the basin during primary oil production. The results of pressure maintenance methods to arrest the rapid reservoir pressure decline due to large pressure drawdown necessary to produce oil and water, as well as gas (including carbon dioxide) and water injection methods to improve oil recovery are presented.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3