Analytical and Numerical Solution for Large Plastic Deformation of Solid Expandable Tubular

Author:

Al-Abri Omar S.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, College of Engineering, Sultan Qaboos University, Oman

Abstract

Abstract This paper presents analytical and numerical solutions developed to investigate the structural response of thick circular cylindrical shells subjected to large plastic deformation due to expanding them using rigid mandrel of conical shape. The work is especially focused on the petroleum drilling application known as Solid Expandable Tubular (SET) technology. Equilibrium equations, incompressibility conditions and Levy-Mises flow rule were used to develop analytical model which relates the expansion ratio and the mandrel-tubular system configuration to the force required for expansion and the tubular length and thickness variations. In addition, Tresca's yield criterion was used to represent the plastic behavior of the tubular material. The developed analytical model is capable of predicting the force required for expansion and the length and thickness variations induced in the tubular due to the expansion process. A numerical solution of the tubular expansion process was also developed using the commercial finite element software ABAQUS. Experiments have been conducted for tubular expansion on a full-scale test-rig in the Engineering Research Laboratory at Sultan Qaboos University to validate the analytical and numerical solutions. A standard tubular of 7⅝ inch (193.68 mm) outer diameter and ⅜ inch (9.525 mm) wall thickness was expanded using expansion ratios of 16%, 20%, and 24%, the mandrel semi-cone angle being 10°. The parameters like thickness variation, length shortening and expansion force were measured experimentally and calculated through analytical and numerical models. Analytical and numerical results were in good agreement with the experimental values. Expansion ratios of 16%, 20%, and 24% resulted in tubular thickness reduction of approximately 6.67%, 10.3%, and 13.16%, respectively. Also, the required expansion force for the same expansion ratios was around 940 kN, 1092 kN, and 1213 kN.

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3