Case Study: Predicting Electrical Submersible Pump Failures Using Artificial Intelligence and Physics-Based Hybrid Models

Author:

Silvia Shejuti1,Gilad Yocheved1,Wilson Thomas Andrew1,Akbari Babak1,Furlong Edward R.1

Affiliation:

1. Baker Hughes

Abstract

Abstract Despite being the most widely used artificial lift method for high-producing oil wells, ESPs still experience unplanned failures that impact well productivity and overall field economics. Our advanced ESP Predictive Failure Analytics (PFA) can help detect ESP events ahead of time and extend the overall ESP run life. PFA enabled a major Latin American operator, experiencing frequent unplanned ESP failures, to identify critical events while pumps were running and take remedial actions to extend ESPs run life. Methods, Procedures, Process PFA leverages artificial intelligence (AI), statistical and physics-based models to reliably predict Remaining Useful Life (RUL) and possible failure cause. The models are trained using historical sensor time-series from both running and failed ESPs. The trained models are deployed to predict short-term events that may lead to immediate failure, such as a broken shaft, short-circuit, grounded downhole failure; as well as long-term events which build up over time, such as pump low efficiency, sand, scale deposition and gassy conditions. Results, Observations, Conclusions For this study, we used two ESPs. For ESP-1, PFA predicted broken shaft/missed pump stages after a sudden decline in motor current and production rate. As the production rate declined beyond the minimum recommended operating range, PFA identified downthrust condition and estimated a significant RUL reduction. PFA enables the operator to quickly schedule a workover, reducing downtime. For ESP-2, intake pressure and motor current started decreasing and motor temperature started increasing. PFA predicted sand influx and estimated a significant RUL reduction. A chemical injection was applied to reduce sand, and avoid an imminent failure leading to PFA estimating an increased RUL. Novel/Additive Information PFA is an innovative approach which combines AI, statistical and physics-based methods to provide explainable predictions of ESP failure. Unlike commonly used threshold-based approaches, PFA tends to generate fewer alarms which enables proactive optimization of ESP performance, avoiding unplanned failures and extend ESP run life.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrodynamics of transient processes in a well with an electric submersible pump;Bulletin of the Tomsk Polytechnic University Geo Assets Engineering;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3