Robust Nonlinear Newton Solver With Adaptive Interface-Localized Trust Regions

Author:

Klemetsdal Øystein S.1,Møyner Olav1,Lie Knut-Andreas2

Affiliation:

1. Norwegian University of Science and Technology and SINTEF Digital

2. SINTEF Digital

Abstract

Summary The interplay of multiphase-flow effects and pressure/volume/temperature behavior encountered in reservoir simulations often provides strongly coupled nonlinear systems that are challenging to solve numerically. In a sequentially implicit method, many of the essential nonlinearities are associated with the transport equation, and convergence failure for the Newton solver is often caused by steps that pass inflection points and discontinuities in the fractional-flow functions. The industry-standard approach is to heuristically chop timesteps and/or dampen updates suggested by the Newton solver if these exceed a predefined limit. Alternatively, one can use trust regions (TRs) to determine safe updates that stay within regions that have the same curvature for numerical flux. This approach has previously been shown to give unconditional convergence for polymer- and waterflooding problems, also when property curves have kinks or near-discontinuous behavior. Although unconditionally convergent, this method tends to be overly restrictive. Herein, we show how the detection of oscillations in the Newton updates can be used to adaptively switch on and off TRs, resulting in a less-restrictive method better suited for realistic reservoir simulations. We demonstrate the performance of the method for a series of challenging test cases ranging from conceptual 2D setups to realistic (and publicly available) geomodels such as the Norne Field and the recent Olympus model from the Integrated Systems Approach for Petroleum Production (ISAPP) optimization challenge.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3