Investigation of Production-Induced Stress Changes for Infill-Well Stimulation in Eagle Ford Shale

Author:

Guo Xuyang1,Wu Kan1,Killough John1

Affiliation:

1. Texas A&M University

Abstract

Summary Heterogeneous stress has a great effect on fracture propagation and perforation-cluster efficiency of infill wells. Principal-stress reorientation induced by depletion of parent wells has been investigated by previous numerical studies assuming uniform biwing fracture geometry along the horizontal wells. However, recent field diagnostics indicate that fractures along the horizontal wells are generally nonuniformly developed. In this study, we investigated the impact of depletion of parent wells with complex fracture geometry on stress states, and analyzed stimulation efficiency of infill wells by using an in-house reservoir geomechanical model for Eagle Ford Shale. The model fully couples multiphase flow and rock deformation in three dimensions based on the finite-element method, incorporating complex fracture geometry and heterogeneity. We used this model to accurately characterize pressure distribution and to update stress states through history matching production data of parent wells in Eagle Ford Shale. Depletion of parent wells with nonuniform fracture geometries, which has not been researched thoroughly in the literature, is incorporated in the study. Results show that magnitude and orientation of principal stresses are greatly altered by depletion, and the alteration is uneven because of nonuniform fracture geometries. Stress reversal monitored at the center of the infill location starts after 1 year of production, and it takes another 8 months to be totally reversed for 90°. We also performed sensitivity studies to examine effects of parameters on changes of magnitude and orientation of stress at the infill location, and found that effects of bottomhole pressure (BHP), differential stress (DS), and fracture geometry of parent wells are all significant, whereas effects of the reservoir elastic property are limited. Effects of production time of parent wells are also noticeable in all sensitivity studies. This work analyzes stress-state change induced by depletion of parent wells in Eagle Ford Shale, and provides critical insights into the optimization for stimulation of infill wells.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3