Abstract
Summary
Heterogeneous stress has a great effect on fracture propagation and perforation-cluster efficiency of infill wells. Principal-stress reorientation induced by depletion of parent wells has been investigated by previous numerical studies assuming uniform biwing fracture geometry along the horizontal wells. However, recent field diagnostics indicate that fractures along the horizontal wells are generally nonuniformly developed. In this study, we investigated the impact of depletion of parent wells with complex fracture geometry on stress states, and analyzed stimulation efficiency of infill wells by using an in-house reservoir geomechanical model for Eagle Ford Shale.
The model fully couples multiphase flow and rock deformation in three dimensions based on the finite-element method, incorporating complex fracture geometry and heterogeneity. We used this model to accurately characterize pressure distribution and to update stress states through history matching production data of parent wells in Eagle Ford Shale. Depletion of parent wells with nonuniform fracture geometries, which has not been researched thoroughly in the literature, is incorporated in the study. Results show that magnitude and orientation of principal stresses are greatly altered by depletion, and the alteration is uneven because of nonuniform fracture geometries. Stress reversal monitored at the center of the infill location starts after 1 year of production, and it takes another 8 months to be totally reversed for 90°. We also performed sensitivity studies to examine effects of parameters on changes of magnitude and orientation of stress at the infill location, and found that effects of bottomhole pressure (BHP), differential stress (DS), and fracture geometry of parent wells are all significant, whereas effects of the reservoir elastic property are limited. Effects of production time of parent wells are also noticeable in all sensitivity studies. This work analyzes stress-state change induced by depletion of parent wells in Eagle Ford Shale, and provides critical insights into the optimization for stimulation of infill wells.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献