Rapid Simulation and Optimization of Geological CO2 Sequestration Using Coarse Grid Network Model

Author:

Aslam Billal1,Yan Bicheng1,Tariq Zeeshan1,Krogstad Stein2,Lie Knut-Andreas2

Affiliation:

1. King Abdullah University of Science and Technology

2. SINTEF Digital

Abstract

Abstract Large-scale CO2 injection for geo-sequestration in deep saline aquifers can significantly increase reservoir pressure, which, if not appropriately managed, can lead to potential environmental risk. Brine extraction from the aquifer has been proposed as a method to control the reservoir pressure and increase storage capacity. However, iterative optimization of the well controls for this scenario using high-resolution dynamic simulation models can be computationally expensive. In this paper, we demonstrate the application of a so-called coarse–grid network model (CGNet) as a reduced-order model for efficient simulation and optimization of CO2 sequestration with brine extraction. As a proxy, CGNet is configured by aggressively coarsening the fine-scale grid and then tuning the parameters of the associated simulation graph (transmissibility, pore volumes, well indices, and relative permeability endpoints) by minimizing the mismatch of well-response data (rates, bottom-hole pressure) and saturation distribution from the fine-scale model. Calibration and optimization procedures are automated using gradient-based optimization methods that leverage automatic differentiation capabilities in the reservoir simulator in the same way backpropagation methods are used in training neural networks. Once calibrated, CGNet is employed for well-control optimization. Validation with the fine-scale model shows that CGNet closely matches the optimized net-present value (NPV). Numerical examples using the Johansen model, available as a public dataset, shows that the optimization can be accelerated up to seven times using CGNet compared with a fine-scale model. (Using a compiled language will likely result in significantly larger speedups as small models suffer from a disproportionately high computational overhead when executed in MATLAB.) This study implies that a reduced-order model such as CGNet can be a powerful data-driven tool for faster evaluation of CO2 geo-sequestration simulation, combined with proper reservoir monitoring program.

Publisher

SPE

Reference30 articles.

1. Simultaneous CO2 injection and water production to optimise aquifer storage capacity;Bergmo;Int. J. Greenh. Gas Control, The 5thTrondheim Conference on CO2 Capture, Transport and Storage,2011

2. Impact-driven pressure management via targeted brine extraction—Conceptual studies of CO2 storage in saline formations;Birkholzer;Int. J. Greenh. Gas Control,2012

3. Carbon capture and storage (CCS): the way forward;Bui;Energy Environ. Sci,2018

4. Chen, B., Kang, Q., Pawar, R.J., 2023. Spatial Data Assimilation and Risk Forecasting in Geologic CO2 Sequestration. Presented at the SPE Western Regional Meeting, OnePetro. https://doi.org/10.2118/212975-MS

5. Geological modeling and simulation of CO2 injection in the Johansen formation;Eigestad;Comput. Geosci,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3