Acid Stimulation Evolution and Optimization for HPHT Deep Gas Formations

Author:

Moid Farrukh1,Rodoplu Rasim Serdar1,Nutaifi AbdulRahman1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Acid stimulation and fracturing in multiple layers formation requires an integrated approach to design and execute an effective stimulation treatment. An extensive campaign of acid stimulation on carbonate formation to increase productivity index in a deep High Pressure High Temperature (HPHT) gas bearing carbonate formation is discussed here. A high degree variation in permeability across long interval, stress barriers between target zones, and completion limitations were main challenges to design an effective stimulation treatment. The target was to achieve effective acid stimulation for multi-layers carbonate formation with different formation properties and stress barriers. Although all layers had similar initial pressures and gas compositions; but different properties. Comingled flow was planned from the formation, therefore effective stimulation for each layer was recommended to drain effectively and improve recovery. To assess the best stimulation strategy in early stage of development, complete set of diagnostics conducted across all formations before and after the acid treatment coupled with geomechanical studies on actual core samples. Various stimulation techniques were implemented from Small Matrix Treatments (SMT) with Coiled Tubing, Matrix Acidizing Treatments (MAT), High Rate Matrix Acidizing (HRMA), and Acid Fracturing Treatment (AFT). Thorough study of results as part of learning process was conducted to optimize the important parameters that affect the stimulation efficiency such as perforation strategy, completion design, diverter selection, fracturing design and implementation. The importance of modeling in optimization process, comparison between different treatment types and fluid systems is discussed supported by actual data such as temperature logs, post-treatment flowback analysis, pressure transient analysis and production logging results.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3