Oil Configuration Under High-Salinity and Low-Salinity Conditions at Pore Scale: A Parametric Investigation by Use of a Single-Channel Micromodel

Author:

Bartels W.-B.. -B.1,Mahani H..2,Berg S..2,Menezes R..3,van der Hoeven J. A.1,Fadili A..2

Affiliation:

1. Utrecht University

2. Shell Global Solutions International B.V.

3. Delft University of Technology

Abstract

Summary Low-salinity waterflooding (LSF) is receiving increased interest as a promising method to improve oil-recovery efficiency. Most of the literature agrees that, on the Darcy scale, LSF can be regarded as a wettability-modification process, leading to a more-water-wet state, although no consensus on the microscopic mechanisms has been reached. To establish a link between the pore-scale and the Darcy-scale description, the flow dynamic at an intermediate scale—i.e., networks of multiple pores—should be investigated. One of the main challenges in addressing phenomena on this scale is to design a model system representative of natural rock. The model system should allow for a systematic investigation of influencing parameters with pore-scale resolution while simultaneously being large enough to capture larger-length-scale effects such as saturation changes and the mobilization and connection of oil ganglia. In this paper, we use micromodels functionalized with active clay minerals as a model system to study the low-salinity effect (LSE) on the pore scale. A new method was devised to deposit clays in the micromodel. Clay suspensions were made by mixing natural clays (montmorillonite) with isopropyl alcohol (IPA) and were injected into optically transparent 2D glass micromodels. After drying the models, the clay particles were deposited and stick naturally to the glass surfaces. The micromodel was then used to investigate the dependence of the LSE on the type of oil (crude oil vs. n-decane), the presence of clay particles, and aging. Our results show that the system is responsive to low-salinity brine as the effective contact angle of crude oil shifts toward a more-water-wetting state when brine salinity is reduced. When using n-decane as a reference case of inert oil, no change in contact angle occurred after a reduction in brine salinity. This responsiveness in terms of contact angle does not necessarily mean that more oil is recovered. Only in the cases where the contact-angle change (because of low-salinity exposure) led to release of oil and reconnection with oil of adjacent pore bodies did the oil become mobile and the oil saturation effectively reduce. This makes contact-angle changes a necessary but not sufficient requirement for incremental recovery by LSF. Interestingly, the wettability modification was observed in the absence of clay. Osmosis and interfacial tension (IFT) change were found not to be the primary driving mechanisms of the low-salinity response.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3