Hybrid Multiphase Rate Forecasting Model in Liquid Wells for Unconventional Reservoirs

Author:

Sinha Utkarsh1,Zalavadia Hardikkumar1,Chauhan Prithvi Singh1,Sankaran Sathish1

Affiliation:

1. Xecta Digital Labs

Abstract

Abstract The development of shale plays requires accurate forecasting of production rates and expected ultimate recoveries, which is challenging due to the complexities associated with production from hydraulically fractured horizontal wells in unconventional reservoirs. Traditional empirical models like Arps decline are inadequate in capturing these complexities, and long-term forecasting is hindered by the challenges posed by 3 phase flow. In response, a new physics-augmented, data-driven forecasting method has been proposed that efficiently captures these complexities. The proposed PI-based forecasting (PIBF) method combines data-driven techniques with the physics of propagation of dynamic drainage volume under transient flow conditions observed by unconventional wells for a prolonged period. The model requires only routinely measured inputs such as production rates and wellhead pressure, and efficiently captures the trend shift in gas-to-oil ratio caused by free gas liberation in the near-wellbore region. By using material balance and productivity index models, the proposed approach can forecast well performance and handle changing operational conditions during the well's lifecycle. Compared to existing empirical or analytical methods like Arps decline and RTA, the proposed method yields more accurate forecasting results, while still using easily available inputs. Empirical methods like Arps decline have low input requirements but lack physical insights, leading to inaccuracies and inability to handle changing operational conditions. Pure physics-based methods like RTA and reservoir simulation require more input properties that are often difficult to obtain, resulting in a low range of applicability. Overall, the proposed method offers a promising alternative to existing methods, effectively combining data-driven techniques with physics-based insights to accurately forecast well performance and handle changing operational conditions in unconventional reservoirs.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3