An Experimental Investigation of Polysilicon Nanoparticles’ Recovery Efficiencies through Changes in Interfacial Tension and Wettability Alteration

Author:

Roustaei Abbas1,Moghadasi Jamshid1,Iran Abadan2,Bagherzadeh Hadi2,Shahrabadi Abbas2

Affiliation:

1. Abadan Institute of Technology (AIT)

2. Research Institute of Petroleum Industry (RIPI), Tehran, Iran

Abstract

Abstract New technologies are emerging oil industry to afford the need for increasing oil recovery from oilfields, one of which is Nanotechnology. This paper experimentally investigates a special type of Nanoparticles named Polysilicon ones which are very promising materials to be used in near future for enhanced oil recovery. There are three types of Polysilicon Nanoparticles which can be used according the reservoir wettability conditions. In this paper, hydrophobic and lipophilic polysilicon (HLP) and naturally wet polysilicon (NWP) are investigated as EOR agents in water-wet sandstone rocks. These two Nanoparticles recover additional oil through major mechanisms of interfacial tension reduction and wettability alteration. The impact of these two Nanoparticle types on water-oil interfacial tension and the contact angle developed between oil and the rock surface in presence of water phase were investigated. Then, several coreflood experiments were conducted to study their impacts directly on recoveries. Furthermore, optimum pore-volume injection of each Nano-fluid was determined according the pressure drop across the core samples. The results show a change toward less water-wet condition and a drastic decrease in oil-water interfacial tension from 26.3 mN/m to 1.75 mN/m and 2.55 mN/m after application of HLP and NWP Nano-fluids respectively. As a result, oil recoveries increase by 32.2% and 28.57% when a 4 gr/lit concentration of HLP and NWP Nano fluids are injected into the core samples respectively. According the differential pressure data, two and three pore-volume injections of NWP and HLP Nano-fluids are the best injection volumes respectively. Finally, HLP and NWP Nanoparticles improve oil recovery without inducing any formation damage according the oil recovery and pressure drop data.

Publisher

SPE

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3