Experimental Design as a Framework for Multiple Realisation History Matching: F6 Further Development Studies

Author:

Alessio Laurent Didier1,Bourdon Laurent Marc1,Coca Spencer1

Affiliation:

1. Sarawak Shell Berhad

Abstract

Abstract History matching is traditionally complex and time-consuming: multiple parameters influence the match and their inter-dependency produces effects that are difficult to predict. Defining the match itself can be challenging, since various indexes or responses can be used: water breakthrough timing, pressures, layer contributions etc… Consequently, whilst multiple realisations methodologies are routinely applied for "green" field development planning, most of the time incremental activity screening on "brown" fields is done on a single matching realisation -"the" matched model - with little confidence that the full range of uncertainties is captured. Experimental design provides a well-suited framework to tackle the challenge of multi-realisation history matching, following these key steps:Selection of key parameters with variance analysis,Reduction of dimensionality by creating hybrid parameters, using techniques related to principle component analysis,Predicting matching domains: combination of parameters levels (once discretised) that are likely to generate a match. This greatly helps the likelihood of finding multiple matching realisations, covering the range of parameter variation. This methodology was successfully applied in the F6 subsurface studies, aimed at screening field redevelopment opportunities. F6 is the largest gas field in the Central Luconia carbonate province, offshore Sarawak (Borneo), having a GIIP of more than 7 Tscf. With over half the reserves produced, well capacity is now threatened by the rising aquifer. In order to safeguard and possibly increase the reserves, a field review was undertaken to identify further development opportunities, and a multi-realisation approach was chosen to capture the effect of key subsurface uncertainties on those activities. A total of 28 matching realisations were generated, covering the variation range of the identified key seven parameters whilst optimising the number of runs performed, thus saving time. Key to the success of the method lies in the integration of disciplines to allow the upfront identification of parameters and their ranges. The screening of redevelopment options against those realisations allowed to establish the range of expected incremental reserves, assess risks, and form a sound basis for business decisions. Introduction F6 is the largest gas field within the Sarawak Shell portfolio, with a GIIP of over 7 Tscf. The field covers a large area of approx. 168 km2 and has a gas-bearing interval of over 850 feet thickness. It is an elongated carbonate build-up of Miocen age, which has steep flanks and a generally flat crest. Two main units make up the gas accumulation: the Upper (Zone 1 and Zone 2) reservoir and Lower (Zone 3) reservoir, separated by an extensive baffle (figure 1). The Lower reservoir contains almost two-thirds of the gas in place. Production started in 1987 and the initial field performance indicated a weak aquifer drive, with a slow water rise. Water breakthrough occurred in late 2001, and capacity went under threat since then, and triggered the need to look at infill drilling and redevelopment opportunities. To this purpose a comprehensive subsurface review was undertaken, using the latest information, notably a 3D seismic dataset shot in 2002, but also innovative technologies such as multi-attribute imaging to map the internal architecture, and Experimental Design techniques to perform a multi-parameter history match, aimed at delivering matching subsurface realisations covering the whole range of uncertainties.

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3