Virtual Multiphase Flowmetering Using Adaptive Neuro-Fuzzy Inference System (ANFIS): A Case Study of Hai Thach-Moc Tinh Field, Offshore Vietnam

Author:

Trung Tran Ngoc1,Truong Trieu Hung2,Tung Tran Vu3,Hai Ngo Huu1,Khoa Dao Quang1,Tinh Nguyen Thanh1,Son Hoang Ky1

Affiliation:

1. Bien Dong Petroleum Operating Company

2. Ha Noi University of Mining and Geology

3. Bien Dong Petroleum Operating Company (Corresponding author)

Abstract

Summary For any oil and gas company, well-testing and performance-monitoring programs are expensive because of the cost of equipment and personnel. In addition, it may not be possible to obtain all of the necessary data for a reservoir for a period of time because of production demand constraints or changes in surface process conditions. To overcome these challenges, there are many studies on the implementation and value of virtual flowmetering (VFM) for real-time well performance prediction without any need for a comprehensive well-testingprogram. This paper presents the VFM model using an adaptive neuro-fuzzy inference system (ANFIS) at Hai Thach-Moc Tinh (HT-MT) gas-condensate field, offshore Vietnam. The ANFIS prediction model can tune all its membership functions (MFs) and consequent parameters to formulate the given inputs to the desired output with minimum error. In addition, ANFIS is a successful technique used to process large amounts of complex time series data and multiple nonlinear inputs-outputs (Salleh et al. 2017), thereby enhancing predictability. The authors have built ANFIS models combined with large data sets, data smoothing, and k-fold cross-validation methods based on the actual historical surface parameters such as choke valve opening, surface pressure, temperature, the inlet pressure of the gas processing system, etc. The prediction results indicate that the local regression “loess” data smoothing method reduces the processing time and gives both clustering algorithms the best results among the different data preprocessing techniques [highest value of R and lowest value of mean squared error (MSE), error mean, and error standard deviation]. The k-fold cross-validation technique demonstrates the capability to avoid the overfitting phenomenon and enhance prediction accuracy for the ANFIS subtractive clustering model. The fuzzy C-mean (FCM) model in the present study can predict the gas condensate production with the smallest root MSE (RMSE) of 0.0645 and 0.0733; the highest coefficient of determination (R2) of 0.9482 and 0.9337; and the highest variance account of 0.9482 and 0.9334 for training and testing data, respectively. Applied at the HT-MT field, the model allows the rate estimation of the gas and condensate production and facilitates the virtual flowmeter workflow using the ANFIS model.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction model of continuous discharge coefficient from tank based on KPCA-DE-SVR;Journal of Loss Prevention in the Process Industries;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3