Reservoir Modelling of Complex Geological Systems--A Multiple-Point Perspective

Author:

Eskandari Kiomars1,Srinivasan Sanjay1

Affiliation:

1. University of Texas at Austin

Abstract

Summary Accurate characterization of sub-surface oil reservoirs is an essential prerequisite to the design and implementation of enhanced oil recovery (EOR) scenarios. Specifically, in reservoir characterization, integrating static and dynamic data into reservoir models to construct accurate and realistic models has received considerable attention. Unlike most of the conventional geostatistical approaches of integrating data into reservoir models that are based on semi-variograms (two-point statistics) as a measure of spatial connectivity, a complete multiple-point (MP) statistic framework is presented in this paper. In contrast to two-point statistic methods, MP statistics-based methods are capable of reproducing curvilinear geological structures. The algorithm starts with extracting MP statistics from training images (TI) using an optimal spatial template. After collecting different patterns and building the MP histogram, the pattern reproduction process commences. This process begins from data locations and then grows to fill the whole reservoir domain. The algorithm accounts for three main practical issues: uncertainty in geological scenarios, scanning template and non-stationarity. The MP statistics algorithm (growthsim) is capable of integrating data from multiple data sources. Among these data types is dynamic data or flow history. The conventional approach to integrate production information into reservoir models is by iterative perturbation of the reservoir model until the production history of the reservoir is matched. Iterative methods have been applied till date to random fields that are completely characterized by a two-point co-variance function. In contrast, this paper presents a forward modelling approach that investigates history matching within a MP modelling framework. A novel technique implemented in this research is based on the merging of MPs inferred from history matched and geological models. Pattern growth is performed subsequently by sampling from the merged MP histograms. History matched models using the presented approach show an excellent agreement with underlying geological descriptions and match production history.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3