Abstract
Summary
Secondary fractures and faults associated with reservoir-scale faults affect both permeability and permeability anisotropy and hence play an important role in controlling the production behavior of a faulted reservoir. It is well known from geologic studies that there is a concentration of secondary fractures and faults in damage zones adjacent to large faults. Because there are usually inadequate data to fully incorporate damage-zone fractures and faults into reservoir-simulation models, this study uses the principles of dynamic rupture propagation from earthquake seismology to predict the nature of fractured/damage zones associated with reservoir-scale faults. We include geomechanical constraints in our reservoir model and propose a generalized workflow to incorporate damage zones into reservoir-simulation models more routinely.
The model we propose calculates the extent of the damage zone along the fault plane by estimating the volume of rock brought to failure by the stress perturbation associated with dynamic-rupture propagation. We apply this method to a real reservoir using both field- and well-scale observations. At the rupture front, damage intensity gradually decreases as we move away from the rupture front or fault plane. In the studied reservoir, the secondary-failure planes in the damage zone are high-angle normal faults striking subparallel to the parent fault, which may affect the permeability of the reservoir in both horizontal and vertical directions. We calibrate our modeling with both outcrop and well observations from a number of studies. We show that dynamic-rupture propagation gives a reasonable first-order approximation of damage zones in terms of permeability and permeability anisotropy in order to be incorporated into reservoir simulators.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献