3D Modeling of Multistage Hydraulic Fractures and Two-Way Coupling Geomechanics - Fluid Flow Simulation of a Horizontal Well in the Nikanassin Tight Gas Formation, Western Canada Sedimentary Basin

Author:

Gonzalez Laureano1,Nasreldin Gaisoni2,Rivero Jose2,Welsh Pete2,Aguilera Roberto1

Affiliation:

1. University of Calgary

2. Schlumberger

Abstract

Abstract Unconventional gas is stored in extensive areas known as Basin Centered Continuous Gas Accumulations. While the estimated worldwide figures differ significantly, the consensus among the studies relating to unconventional gas resources is that the volumes are gigantic. However, the low permeability in these types of reservoirs usually results in a very low recovery factor. To help unlock these resources, this paper presents a new and more accurate way of simulating multi-stage hydraulic fracturing in horizontal wells in three dimensions (3D) using single and dual porosity reservoir models. In this approach, the geometry (not necessarily symmetric) and orientation of the multiple hydraulic fractures are driven by the prevailing stress state in the drainage volume of the horizontal well. Once the hydraulic fracturing job is accurately modeled in 3D, two-way geomechanical coupling is used to history match the produced gas from a horizontal well drilled in the Nikanassin naturally fractured tight gas formation (Western Canada Sedimentary Basin). Traditionally, the most widely used approaches have their roots in semi-analytical calculations simplifying the fracturing system to a planar feature propagating symmetrically away from a line source of injection. In contrast, the computed results presented in this study show that the incorporation of geomechanical effects gives a more realistic representation of the orientation and geometry of hydraulic fractures. Reduction in permeability of the natural and hydraulic fractures due to pressure depletion results in more realistic production predictions when compared with the case where geomechanical effects are ignored. The telling conclusion, in light of the computed results, is that the field of hydraulic fracturing provides an object lesson in the need for coupled 3D geomechanical approaches. The method presented in this paper will help to improve gas rates and recoveries from reservoirs with permeability values in the nano-Darcy scale.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3