Increasing Stimulated Reservoir Volume SRV in Unconventional Reservoirs: Microstructural and Rock Mechanical Study

Author:

Mustafa Ayyaz1,Tariq Zeeshan1,Abdulraheem Abdulazeez1,Mahmoud Mohamed1,Al Nakhli Ayman2,BaTaweel Mohammed2

Affiliation:

1. KFUPM

2. Saudi Aramco

Abstract

Abstract The huge resources of unconventional hydrocarbon reserves across the world coupled with the growing oil value makes their contribution to be significantly important to the world economy. Oil producing companies can invest in unconventional hydrocarbon to cover local demand and save crude oil for exporting. Conversely, one of the foremost challenge that producers face in unconventional reservoirs is the need for large stimulated reservoir volume (SRV) to ensure economical production. This study describes a new stimulation technique to increase the stimulated reservoir volume using the chemical reactions along with hydraulic fracturing fluid. Reactive chemicals are used to generate the localized pressure and heat in tight formations to create additional micro fracturing, thus increase the fracture complexity. Created induced micro-fractures considerably increased the porosity, permeability, and ultimately the SRV. The synthetic sweetspots are created nearby a wellbore and fractured area by the help of new stimulation treatment mechanism. Results showed significant conductivity increase with new treatment technique. Rock samples were studied for mineralogical and microstructural characterizations using advanced spectroscopy and microscopy analytical techniques. Moreover, on each rock specimen ultrasonic compressional (P-wave) and shear (S-wave) velocities were recorded and dynamic Poisson's ratio and Young's modulus were determined. The obtained topographical images revealed the presence of micro-cracks and nanoscale pores in all studied core samples. The novelty of this study is to develop a novel fracturing technique to increase stimulated reservoir volume (SRV). The parameters studied in this research can be served as critical inputs for many field applications such as wellbore stability, casing design and perforation, sand production control, and fracturing.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3