Acidizing Treatment Design Assessment Based on Dolomitic Field Core Testing

Author:

Santos Sarai1,Salazar Munive Angel2,Hernandez Del Angel Everardo2,Villaseñor Omar2,Guzman Almazo Jose Luis2,Hernandez Vulpes Dulce2,Beuterbaugh Aaron M.1,Reyes Enrique Antonio1,Squires Scott1,Campos Katya1

Affiliation:

1. Halliburton

2. PEMEX

Abstract

Abstract Fields in offshore Mexico present different challenges to maximizing resource recovery due to the reservoir characteristics and completion configurations. Acidizing of high temperature (HT) dolomitic reservoirs (290 °F/143 °C) in the maritime fields represents the primary stimulation option due to existing well parameters restricting treatment designs to matrix rate conditions. Acidizing treatments are typically based on HCl and organic acids and for the first time a multifunctional, low viscosity, retarded HCl acid is also available. Laboratory wormhole tests were conducted for matrix injection but also in a pseudo-acid fracture condition (split-core) in order to establish feasibility for future stimulation designs. Three acid blends were used, a blend of organic acids (OA), a mixture of HCl and organic acid (HA), and a polymer free retarded HCl acid (HRMA). The cores tested correspond to a particular well and X-ray Diffraction (XRD) analysis confirms it is >98% dolomite. CT imaging corroborates the heterogeneous permeability due to primary and secondary porosity systems (5% – 10% and 10% – 15%). The pore volume breakthrough of each acid blend was determined for two cores of similar porosity under same constant injection rate. Results indicate the organic acids blend (OA) can have better injectivity when flow rate is much higher than the HCl/Organic acid (HA) blend. A core with 10X lower permeability (0.1 – 0.5 mD) was tested with new Retarded HCl acid (HRMA) using same injection rate as the other acid blends. Results indicate that Retarded HCl (HRMA) does not cause core facial dissolution under unoptimized injection rate. The wormhole patterns generated for the HCl/Organic acid (HA) blend show good distribution and for Retarded HCl (HRMA) show enhance acid containment (less ramification). Both HCl acid blends (HA and HRMA) are suitable for dolomitic acidizing under different injection rates, while the purely organic acid blend is more adequate for high rate injection. Notably acidizing of dolomitic reservoirs can be highly efficient under optimized conditions and future work with non-retarded and retarded acids can systematically drive pumping engineering designs. The Retarded HCl acid (HRMA) has multifunctional properties including scale inhibition and lower HCl reactivity.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3