Reinforcement of Polyacrylamide-Co-Tert-Butyl Acrylate Base Gel Using Nanosilica for Conformance Control at Low and High Reservoir Temperatures

Author:

Shamlooh Mohamed1,Hamza Ahmed1,A. Hussein Ibnelwaleed1,S. Nasser Mustafa1,Salehi Saeed2

Affiliation:

1. Qatar University

2. The University of Oklahoma

Abstract

Abstract Challenges of water shut-off, which is categorized under conformance control, are nowadays common in the oil and gas industry. The excessive water quantities produced from oil reservoirs can make the production process economically infeasible. The target of water shut-off process is plugging fractures or high permeability zones to decrease water cuts. Polyacrylamide tert-butyle Acrylate (PAtBA) is used for such applications. Silica (silicon dioxide) has been found to have a strengthening effect as well as it enhances the thermal and mechanical stability of the system. The objective of this study is to introduce nanosilica to reinforce PAtBA crosslinked by polyethyleneimine (PEI) and chromium Acetate (CrAc3) for low and high temperature conformance control applications. In this study, different ratios of polymer to crosslinker were investigated to choose the optimum combination. Then, nanosilica (NS) with different sizes (20, 50 and 85 nm) was added to the polymeric formulation with the inorganic crosslinker (CrAc3) to study the effect of silica content and size on gel strength. While, the reinforcement of the organically crosslinked gels with PEI was accomplished at 130°C. Evaluation of different systems was based on testing the rheological behavior of the mature gel based on the final storage modulus (G′). Differential scanning calorimeter (DSC) technique was also employed to understand the nature of chemical interaction between the various chemicals. The investigation reveals that PatBA:CrAc3 of 9:0.5 is the optimum ratio producing the most strong gel. Silica with the size of 20 nm has produced the strongest gel by increasing the storage modulus by more than 150 %. At high temperature (130°C), 50 nm silica with PAtBA/PEI showed the highest storage modules compared to other sizes. DSC investigation discloses that silica is an inert and has no effect on the gelation reactions. Thus, silica has physical interactions with the polymer in the form of hydrogen bonding which enhances the strength of the gel in comparison with silica-free gels. Therefore, this study introduces a new polymeric formulation that serves as a water shut-off agent for reservoirs at low and high temperatures. The formulation that consists of PAtBA, CrAc3 and NS makes the system more stable and gives it more resistivity toward high shears. Whereas higher gel strength was achieved when PAtBA/PEI/NS was used at high temperatures.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3