Design and Operation of Laboratory Combustion Tubes

Author:

Penberthy W.L.1,Ramey H.J.1

Affiliation:

1. Texas A And M U.

Abstract

Abstract Experimental work on the combustion oil recovery process has consisted of both laboratory and field studies. Although field experiments are the ultimate test of any oil recovery process, they are costly, time consuming and difficult to analyze quantitatively. Laboratory combustion tube experiments can be operated far more rapidly and cheaply, but are subject to scaling and interpretation problems. This paper points out some important design problems, operational criteria and considerations important to interpretation of results. An analytical heat model of movement of a burning front axially along a cylinder with heat loss through an annular insulation was developed. The result was used to identify steady-state temperature distributions both ahead of and behind the burning front, with and without heat loss. Results indicate potential operating limitations on the minimum burning front velocity (or air flux) which may be used for any given combustion tube. Results also enable estimating the effective thermal diffusivity and over-all heat loss from experimental data and thickness of the burning zone. Results of operation of a combustion tube constructed recently verify this preliminary theory in the region immediately ahead of and behind the burning front surprisingly well. Introduction Many field and laboratory studies of the forward combustion oil recovery process have been conducted since the early publications of Kuhn and Koch and Grant and Szasz in 1953 and 1954. In view of the complex and costly nature of this type of investigation, it is not surprising that no complete theory of the nature of the forward combustion process is yet available. However, gross effects are understood well enough that reasonable design procedures are available for planning field operations. Nelson and McNeil have published two comprehensive papers concerning design procedures. One major consideration in planning field operations is the fuel concentration at the burning front. Fuel concentration controls air requirements - an important cost factor in forward combustion. Although fuel concentration can be estimated from field test results by various methods, results are subject to great uncertainty in view of natural limitations on experimental observations. Nelson and McNeil recommend that fuel concentration be determined from laboratory combustion tube studies. Fuel concentration is only one of many important factors which can be studied by combustion tube experimentation. An obvious goal of importance must be development of a comprehensive theory of the forward combustion process. If a theory of this process can be established which matches controlled laboratory experimentation, it should be possible to apply this theory to field operating conditions with some confidence. Laboratory combustion tube studies have already yielded important information concerning the combustion process. However, details concerning the design, construction and operation of combustion tubes are rare. Combustion tubes used by various investigators vary in size, length and mode of operation. Therefore, one purpose of this paper is to present considerations important to design, construction and operation of a combustion tube. In regard to previous combustion tube studies, attention is called to Refs. 1 through 9. These references describe a wide variety of equipment types and present a great deal of pertinent experimental data. In general, combustion tubes usually consist of thin-walled stainless steel tubes containing an oil sand pack mounted within a pressure jacket. Provisions have often been made to heat the tube externally by separately controlled heaters to reduce heat losses. This step usually permits operation at low air fluxes (air rate per square foot burning front surface) similar to those encountered in field operations. Burning is usually conducted from the air inlet end of the tube to the outflow end. The tube orientation used has been vertical or horizontal. For vertical tubes, burning has been conducted vertically downwards. SPEJ P. 183ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3