Measurement And Correlation Of Asphaltene Precipitation From Heavy Oils By Gas Injection

Author:

Kokal S.L.1,Najman J.1,Sayegh S.G.1,George A.E.2

Affiliation:

1. Petroleum Recovery Institute Calgary

2. Canada Centre For Mineral And Energy Technology Ottawa

Abstract

Abstract The nature of asphaltenes and their role in the production and processing of crude oils has been the topic of numerous studies. This is due to the fact that the economics of oil production can be seriously affected by the asphaltene deposition problem. This paper presents a novel method to visualize in situ asphaltene precipitation from heavy oils with light hydrocarbon gases, e.g. methane. propane, ethane/propane mixtures, and carbon dioxide at reservoir pressures and temperatures. Experimental results are reported for the effects of temperature (up to 100 °C), pressure (up to 20 MPa) and composition on the formation of asphaltene precipitates from heavy crude oils. A series of titration experiments were conducted with several n-alkanes to determine the amount of asphaltenes precipitated. Both the amount and nature of the precipitate varied with the solvent used. Propane was the most prolific of all the solvents used in precipitating asphaltenes from the heavy oils. A thermodynamic model proposed by Hirshberg et al. was used to correlate the experimental data. Introduction Miscible and immiscible flooding of crude oil reservoirs by light hydrocarbon gases, carbon dioxide and other injection gases has become a popular method for enhanced oil recovery(1). The flooding process, however, causes a number of changes in the flow and phase behaviour of the reservoir fluids and can significantly alter rock properties. Such changes include the precipitation of asphaltenes(2) and wettability reversal which can alter recovery efficiencies. The existence of asphaltenes in crude oils and their deposition inside reservoirs and wellbores can cause severe problems and affect the efficiency and cost of petroleum production. The important parameters that affect asphaltene precipitation during gas injection are the compositions of the crude oil and the solvent gas, and the pressure and temperature of the reservoir(3–5). Precipitation of asphaltenes is a complex process and it is generally followed by flocculation which produces an insoluble material in the heavy oi1(6). Asphaltenes are believed to be stabilized in solution by resins and aromatics and the asphaltene/resin ratio plays a key role in their precipitation. This ratio is more important than the absolute asphaltene content in determining which crudes will be subject to precipitation. Problems arising from asphaltene deposition have been reported in the literarure(7,8) for many field projects. Some examples of these are the Ventura field in California(9), Hassi Messaoud field in Algeria(l0) and heavy oil fields in Venezuela(l1). Deposition of asphaltenes in the wellbore can be a serious production problem and may require frequent solvent washings and scrapings to maintain oil production(10). Significant damage can be caused during well acidizing because the acid can cause the asphaltenes to precipitate and form rigid films. Other problems associated with asphaltene precipitation are the seizure of downhole safety valves submersible pumps, hinderance in wireline operations and production restrictions. These problems are discussed in derail by Leontaritist(7). Presently asphaltenes are removed either by mechanical cleaning, chemical cleaning, or by manipulating reservoir conditions (for example, pressure, production rates, etc,)(10,12). The approach taken by the oil industry has been a remedial one.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3