Nanosilicas as Accelerators in Oilwell Cementing at Low Temperatures

Author:

Pang Xueyu1,Boul Peter J.1,Jimenez Walmy Cuello1

Affiliation:

1. Halliburton

Abstract

Summary Accelerators are important cementing additives in deepwater wells where low temperatures can lengthen the wait-on-cement (WOC) time, potentially increasing the cost of operations. The cement-set accelerators traditionally used for shortening WOC times are inorganic salts, such as calcium chloride (CaCl2). These accelerators are known to have the potentially negative side effect of increasing the set-cement permeability. Nanosilicas, on the other hand, can be advantageous compared with conventional cement-set accelerators because they reduce the permeability and increase the mechanical strength of cement-based materials. For this reason, nanosilicas are known to be particularly good candidates as replacement materials for traditional salt accelerators. This study investigates the feasibility of the use of different sizes and aspect ratios of nanosilicas as cement hydration accelerators under low-temperature conditions of 59°F (15°C). The nanosilica activities are herein defined through their comparative advantages with respect to traditional accelerators, as well as through the advantages and disadvantages of the different nanosilicas resulting from their various sizes and shapes. Although hydration of oilwell cement is known to be accelerated by the addition of nanosilica, the effects of nanosilica particle shape on cement hydration kinetics has not been previously investigated. The isothermal calorimetry experiments conducted in this study reveal that just as smaller nanosilica particle sizes increase the cement-set acceleration, so do higher nanosilica aspect ratios. The effects of slurry density on the relative merits of CaCl2 and nanosilicas are also investigated. In regular-weight slurries, the effectiveness of nanosilica acceleration appears to be weaker than that of CaCl2, especially during early ages (≤ 3 days). In lightweight slurries, the effectiveness of nanosilica acceleration can be much stronger than that of CaCl2, especially when mid- to long-term properties (≥ 2 days) are considered. Smaller particle sizes and higher aspect ratios enhance the acceleration effect of nanosilicas. The compressive-strength development of lightweight oilwell cements with and without accelerators was also investigated. Lightweight cements accelerated with nanosilica displayed 7-day compressive strengths up to 136% higher than those accelerated with CaCl2.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3