Modeling Formation Damage due to Flocculated Asphaltene Deposition through Dynamic Displacement

Author:

Rezaian A..1,Kordestany A..1,Jamialahmadi M..1,Moghadasi J..1

Affiliation:

1. Petroleum University of Technology

Abstract

Abstract The deposition of asphaltene in porous media and their interaction with rock and fluids represent complex phenomena which needs to be investigated under dynamic flowing condition. It could occur by reducing mobility (λ=k/μ) in three probable mechanisms of asphaltene included damage: a) blocking pore throat, b) altering wettability, and c) increasing the reservoir fluid viscosity and can have strong effect on oil production through heavy oil recovery, miscible flooding, and even primary recovery. Many experiments were performed by researchers to determine the amount of deposition and permeability decline but the boundaries in which the asphaltene deposited in oil or at the pore surface was not determined, thus the models introduced have some difficulties using all parameters. In this paper, a mathematical model is developed constructing to simulate rock-fluid interactions describing permeability decline due to asphaltene deposition. The model considers the second stage (if separated into liquid phase precipitation and pore surface deposition) of asphaltene deposition in which n-hexane used to flocculate asphaltene particles in order to determine the effect of deposition on sandstone rock due to changing of pressure, temperature, and composition of reservoir oil. The influences of various injection rates and concentrations are considered carefully. This model simulation and corresponding analytical method is applied using laboratory data gained by performing various dynamic displacement experiments with pre-separated oil asphaltene content resulted a close agreement so it could predict the trend of permeability reduction due to deposition of asphaltene. So the procedure of matching the parameters is described here. This model can be used for analysis of laboratory core tests of formation damage due to flocculated asphaltene particles. Thus, the present study leads to a new insight into the mathematical explanation of flow behavior in porous media.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3