Bati Raman Field Immiscible CO2 Application—Status Quo and Future Plans

Author:

Sahin Secaeddin1,Kalfa Ulker1,Celebioglu Demet1

Affiliation:

1. Turkish Petroleum Corporation (TPAO)

Abstract

Summary The Bati Raman field is the largest oil field in Turkey and contains approximately 1.85 billion bbl of oil initially in place. The oil is heavy (12°API), with high viscosity and low solution-gas content. Primary recovery was less than 2% of oil originally in place (OOIP). Over the period of primary recovery (1961–86), the reservoir underwent extensive pressure depletion from 1,800 psig to as low as 400 psig in some regions, resulting in a production decline from 9,000 to 1,600 STB/D. In March 1986, a carbon-dioxide (CO2)-injection pilot in a 1,200-acre area containing 33 wells was initiated in the western portion of the field. The gas-injection was initially cyclic. In 1988, the gas injection scheme was converted to a CO2-flood process. Later, the process was extended to cover the whole field. A peak daily production rate of 13,000 STB/D was achieved, whereas rate would have been less than 1,600 STB/D without CO2 application. However, the field has undergone a progressive production decline since 1995to recent levels of approximately 5,500 STB/D. Polymer-gel treatments were carried out to increase the CO2 sweep efficiency. Multilateral- and horizontal-well technology also was applied on a pilot scale to reach the bypassed oil. A water-alternating-gas (WAG) application has been applied extensively in the western part of the field. Current production is 7,000 STB/D. This paper documents more than 25 years of experience of the Turkish Petroleum Corporation (TPAO) on the design and operation of this full-field immiscible CO2-injection project conducted in the Bati Raman oil field in Turkey. The objective is to update the current status report, update the reservoir/field problems that TPAO has encountered (unpredictable problems and results), and provide a critical evaluation of the success of the project.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3