Intelligent Prediction of Stuck Pipe Remediation Using Machine Learning Algorithms

Author:

Abbas Ahmed K.1,Flori Ralph2,Almubarak Haidar2,Dawood Jawad3,Abbas Hayder4,Alsaedi Ahmed2

Affiliation:

1. Iraqi Drilling Company

2. Missouri University of Science and Technology

3. Basra Oil Company

4. Missan Oil Company

Abstract

Abstract Stuck pipe is still a major operational challenge that imposes a significant amount of downtime and associated costs to petroleum and gas exploration operations. The possibility of freeing stuck pipe depends on response time and subsequent surface action taken by the driller during and after the sticking is experienced. A late and improper reaction not only causes a loss of time in trying to release stuck pipe but also results in the loss of an important portion of expensive tubular, downhole equipment and tools. Therefore, a fast and effective response should be made to release the stuck pipe. Investigating previous successful responses that have solved stuck pipe issues makes it possible to predict and adopt the proper treatments. This paper presents a study on the application of machine learning methodologies to develop an expert system that can be used as a reference guide for the drilling engineer to make intelligent decisions and reduce the lost time for each stuck pipe event. Field datasets, including the drilling operation parameters, formation type, and fluid mud characteristics, were collected from 385 wells drilled in Southern Iraq from different fields. The new models were developed to predict the stuck pipe solution for vertical and deviated wells using artificial neural networks (ANNs) and a support vector machine (SVM). The results of the analysis have revealed that both ANNs and SVM approaches can be of great use, with the SVM results being more promising. These machine learning methods offer insights that could improve response time and strategies for treating stuck pipe.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3