A Calibrated Computational Fluid Dynamics Model for Simulating the Rotating Disk Apparatus

Author:

Kotb A.1,Ezzat A. A.2,Ali M.1,Elwany A.1,Nasr-El-Din H. A.1

Affiliation:

1. Texas A&M University

2. Rutgers University

Abstract

Summary Reaction kinetics between calcite and acid systems have been studied using the rotating disk apparatus (RDA). However, simplifying assumptions have been made to develop the current equations used to interpret RDA experiments to enable solving them analytically in contrast to using numerical methods. Previous work has revealed inadequacies of some of these assumptions, which necessitates the use of a computational fluid dynamics (CFD) model to investigate their impact on the RDA results. The objectives of the current work are to develop a calibrated CFD and proxy model to simulate the reaction in the RDA and use this model to estimate the diffusion coefficient and the reaction rate coefficient of the reaction in the RDA. The present work developed the first calibrated CFD model to determine the diffusion coefficient and the reaction rate coefficient in the RDA with minimum assumptions in the hydrochloric acid (HCl) carbonate reaction. More specifically, the model relaxes the constant fluid properties, infinite acting reactor boundaries, and constant reaction surface area assumptions. The proxy model obtained results in reduced computational time with minimal compromise on accuracy. Finally, the proposed model showed an improvement of 63% in predicting the reaction kinetics between calcite and HCl compared to traditional methods.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3