Nanopore-Structure Analysis and Permeability Predictions for a Tight Gas Siltstone Reservoir by Use of Low-Pressure Adsorption and Mercury-Intrusion Techniques

Author:

Clarkson C.R.. R.1,Wood J.M.. M.2,Burgis S.E.. E.2,Aquino S.D.. D.1,Freeman M..1

Affiliation:

1. University of Calgary

2. Encana Corporation

Abstract

Summary The pore structure of unconventional gas reservoirs, despite having a significant impact on hydrocarbon storage and transport, has historically been difficult to characterize because of a wide pore-size distribution (PSD), with a significant pore volume (PV) in the nanopore range. A variety of methods is typically required to characterize the full pore spectrum, with each individual technique limited to a certain pore size range. In this work, we investigate the use of nondestructive, low-pressure adsorption methods, in particular low-pressure N2 adsorption analysis, to infer pore shape and to determine PSDs of a tight gas silt-stone reservoir in western Canada. Unlike previous studies, core-plug samples, not crushed samples, are used for isotherm analysis, allowing an undisturbed pore structure (i.e., uncrushed) to be analyzed. Furthermore, the core plugs used for isotherm analysis are subsamples (end pieces) of cores for which mercury-injection capillary pressure (MICP) and permeability measurements were previously performed, allowing a more direct comparison with these techniques. PSDs, determined from two isotherm interpretation methods [Barrett-Joyner-Halenda (BJH) theory and density functional theory (DFT)], are in reasonable agreement with MICP data for the portion of the PSD sampled by both. The pore geometry is interpreted as slot-shaped, as inferred from isotherm hysteresis loop shape, the agreement between adsorption- and MICP-derived dominant pore sizes, scanning-electron-microscope (SEM) imaging, and the character of measured permeability stress dependence. Although correlations between inorganic composition and total organic carbon (TOC) and between dominant pore-throat size and permeability are weak, the sample with the lowest illite clay and TOC content has the largest dominant pore-throat size and highest permeability, as estimated from MICP. The presence of stress relief-induced microfractures, however, appears to affect laboratory-derived (pressure-decay and pulse-decay) estimates of permeability for some samples, even after application of confining pressure. On the basis of the premise of slot-shaped pore geometry, fractured rock models (matchstick and cube) were used to predict absolute permeability, by use of dominant pore-throat size from MICP/adsorption analysis and porosity measured under confining pressure. The predictions are reasonable, although permeability is mostly overpredicted for samples that are unaffected by stress-release fractures. The conceptual model used to justify the application of these models is slot pores at grain boundaries or between organic matter and framework grains.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3