Mathematical Model Simulates Actual Well Conditions In Fracture Acidizing Treatment Design

Author:

Coulter A.W.1,Alderman E.N.1,Cloud J.E.1,Crowe C.W.1

Affiliation:

1. Dowell Division of The Dow Chemical Company

Abstract

Abstract A new mathematical model has been developed which considers more of the variables encountered during fracture acidizing treatments than previous models. In particular the variables include, wellbore cooldown, temperature profile of fluid in the fracture, the fracture geometry created by both non-reactive and reactive fluids the spending of the leading edge of the acid, and the conductivity of the etched fracture faces. Productivity increases calculated by the new program correlate more closely with actual field results than those calculated by previous programs. This paper describes the previous programs. This paper describes the method of handling the variables in setting up the new model and presents the equations used to describe the reaction rate of the acid. Introduction Fracture acidizing has been used for stimulating wells for over 25 years. The techniques used have developed more as an art, than a science, often based on intangible ideas, rather than on predictable facts. Although a mathematical model has been available since the early 1960's, little correlation has been observed between predicted and field results. One reason for this undoubtedly was due to the use of the acid as both the hydraulic fracturing fluid and as the reactive fluid. Another was the inadequacy of the model to describe the rheological and physical properties of the fluids in the fracture. properties of the fluids in the fracture. Only when treating techniques changed, in which better results were obtained by creating the fracture with a non-reactive pad fluid ahead of the acid, was serious effort directed toward describing the conditions or properties of the fluids in the fracture. Equations were developed first to describe the cooldown of the wellbore area, as illustrated by Ramey's "Wellbore Heat Transmission" equations in the Appendix. Then, Whitsett and Dysart, and later Sinclair, proposed methods for describing the proposed methods for describing the temperature profile of fluids within a hydraulic fracture. Hall and Dollarhide provided basic equations for considering the fracture geometry created by more than one fluid within the fracture.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3