X-Ray Computed Tomography Assisted Investigation of Flow Behaviour of Miscible CO2 to Enhance Oil Recovery in Layered Sandstone Porous Media

Author:

Al-bayati Duraid1,Saeedi Ali1,Ktao Ipek2,Myers Matthew3,White Cameron3,Mousavi Ali4,Xie Quan1,Lagat Christopher1

Affiliation:

1. Curtin University

2. Private researcher

3. CSIRO-Energy

4. Faculty of Upstream Petroleum Industry

Abstract

Abstract Reservoir heterogeneity reflected by permeability variation in the vertical direction is expected to significantly impact on the subsurface multiphase flow behaviour. In this context, we have shown previously that during immiscible flooding the crossflow between low and high permeability zones plays a significant role in determining the reservoir performance in terms of the hydrocarbon yield. In this manuscript, the contribution of crossflow to oil recovery in layered sandstone porous media during miscible CO2 flooding is explored. We conducted core flooding experiments using a core sample constructed by attaching two axially split half sandstone plugs each with a different permeability (0.008 and 0.1 (μm)2). The crossflow between the two layers was controlled by placing either a lint-free tissue paper or an impermeable Teflon sheet to represent a layered heterogeneity with and without communication, respectively. Additionally, to better understand the underpinning mechanisms influencing the flood performance, we imaged the samples during flooding using a high-resolution medical X-Ray computed tomography (XCT) scanner. Our results show that core-scale heterogeneity would indeed play an important role in determining the spatial distribution of the injected CO2during miscible flooding, consequently the oil recovery factor. For instance, our results confirm that permeability heterogeneity in vertical direction would lead to CO2 establishing a prefrential flow path through the high permeability layer leading to its early breakthrough. The above-mentioned CO2 channeling is clearly evident from the X-ray images captured during flooding. However, a reasonble amount of CO2 would still enter the low permeability layer contributing positively to the ultimate oil recovery factor. In fact, the post-processing of the XCT data confirmed the above to take place when cross-layer communication was allowed. The diversion of CO2 from the high to low permeablity layer is believed to be due to the crossflow phenomenon (induced by the viscous and dispersion forces) resulting in a subtle increase (i.e. 1.7%) in the ultimate oil recovery. In a similar study we have done about immiscible flooding, the contribution of crossflow to the overall recovery was found to be about 5%. The less pronounced effect of crossflow under miscible conditions is believed to be due to the absence of capillarity as a more effective driving force behind crossflow. To the best of our knowledge, our core-flooding results as presented in this manuscript and backed by X-ray CT visualisation, are the first set of their kind. They are insightful and would be of interest to the scientific community in revealing how crossflow may control flow behaviour in heterogeneous sandstone reservoirs, with important implications for numerical modelling of CO2 injection.

Publisher

SPE

Reference72 articles.

1. An Experimental Investigation of Immiscible-CO2-Flooding Efficiency in Sandstone Reservoirs: Influence of Permeability Heterogeneity;AL-BAYATI;SPE Reservoir Evaluation & Engineering, Preprint,2018

2. Insights into immiscible supercritical CO2 EOR: An XCT scanner assisted flow behaviour in layered sandstone porous media;AL-BAYATI;Journal of CO2 Utilization,2019

3. Insight investigation of miscible SCCO2 Water Alternating Gas (WAG) injection performance in heterogeneous sandstone reservoirs;AL-BAYATI;Journal of CO2 Utilization,2018

4. Influence of Permeability Heterogeneity on Miscible CO2 Flooding Efficiency in Sandstone Reservoirs: An Experimental Investigation;AL-BAYATI;Transport in Porous Media,2018

5. Experimental and Numerical Simulation Studies of Different Modes of CO2 Injection in Fractured Carbonate Cores;AL EIDAN;Society of Petroleum Engineers,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3