Driving Factors for Purity of Withdrawn Hydrogen: A Numerical Study of Underground Hydrogen Storage with Various Cushion Gases

Author:

Wang Gang1,Pickup Gillian Elizabeth1,Sorbie Kenneth Stuart1,Mackay Eric James1

Affiliation:

1. Heriot-Watt University

Abstract

Abstract The central objective of this study is to improve our current understanding of the hydrodynamic processes arising when hydrogen (H2) is stored in subsurface porous media. In this work, we compare the use of two cushion gases, namely carbon dioxide (CO2) and methane (CH4), for H2storage ina synthetic aquifer. The impacts of viscous instability, gravity segregation, capillary trapping, and CO2 solubility in water on the recovery performance are investigated in detail.In the context of H2 storage, wefocus on both the amount and the purity of the H2that is back produced. A series of very fine-scale numerical simulationswas performed in 2D vertical systems using a fully compositional simulator. A simple three-stage operation strategy (cushion gas injection, H2 injection and H2 production) was designed to trigger the flow behaviour of interest. Based onscaling theory, we analysed the impacts of various mechanisms on the H2 recovery performance, from viscous dominated to gravity dominated flow regimes. Viscous instability and permeability heterogeneity may strongly degrade the purity of the back produced H2. No matter whichgas (CO2 or CH4) is selected as the cushion gas, the less viscous H2 infiltrates the cushion gas, meaning that the displacement does not proceed in a piston-like fashion. In the viscous-dominated scenario, H2 may even bypass the cushion gas of CO2, which subsequently leads to early breakthrough of the cushion gas and thus a dramatic reduction in H2 purity during back production. However, this effect does not arise in the case with CH4 as cushion gas. On the other hand, in the gravity-dominated case, the less dense H2 accumulates above the cushion gas and there is no flow infiltration or bypassing occurring in cases studied here. Therefore, the overall H2recovery performance is much better in the gravity-dominated regime than that in the viscous dominated regime. Finally, we demonstrate that it is important to include the solubility of CO2 when used as cushion gas in aquifer systems. This isbecause CO2 dissolution in water may significantly reduce its gas volume and lead to early water breakthrough during back production.

Publisher

SPE

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3