Extensional Effects during Viscoelastic Polymer Flooding: Understanding Unresolved Challenges

Author:

Azad Madhar S.1,Trivedi Japan J.1

Affiliation:

1. University of Alberta

Abstract

Summary Several studies have tried to relate polymers’ enhanced oil recovery (EOR) potential to their viscoelastic characteristics such as onset, rheo thickening, extensional viscosity, and Deborah number (De). Contradictions prevail when it comes to reduction in residual oil saturation (Sor) during polymer flooding and the role of extensional properties. De calculated using the oscillatory relaxation time fails to explain the different pressure profiles exhibited by the viscous and viscoelastic polymers. Extensional viscosity has been ignored in many studies as the reason for additional Sor reduction based on the core-scale apparent viscosity and core-scale capillary number (Nc). In recent studies, a significant oil mobilization was shown by the viscoelastic polymers even before the critical Nc, which indicates that the capillary theory breaks out under specific conditions during polymer flooding. Moreover, the additional residual oil recovery caused by the high-salinity polymer solutions cannot be explained by the oscillatory De. In this paper, we compile and examine many such unresolved challenges from various literature with rheological and petrophysical insights. The uniaxial bulk extensional rheology is performed on the relevant polymers using a capillary breakup extensional rheometer to measure the extensional relaxation time, maximum extensional viscosity at the critical De, and strain hardening index. A detailed analysis signifies the role of extensional rheology on the viscoelastic onset, rheo thickening, and Sor reduction even under varying salinity conditions. The results also highlight the advantages of extensional rheology over oscillatory rheology and validate the capillary theory using modified capillary number.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3