Effect of Vertical Fractures on Reservoir Behavior-Incompressible Fluid Case

Author:

Prats M.1

Affiliation:

1. Shell Development Co.

Abstract

Abstract The effect of a sand-filled vertical fracture of limited radial extent and finite capacity (fracture capacity is the product of the permeability and width of the fracture) on the flow behavior of a cylindrical reservoir producing an incompressible fluid through a centrally located well has been investigated mathematically. The shape of the lines of equal pressure near the fracture is essentially independent of the size of the reservoir, provided that the field radius is of the order of the fracture length or larger. For reasonable values of production rates and of fluid, reservoir and fracture properties, the total pressure drop between the end of the fracture and the well is generally negligible compared with the pressure drop in the reservoir. With regard to production response, the effect of vertical fractures can be represented by the production response of an equivalent or effective well radius. For a high-capacity fracture, the effective well radius is a quarter of the total fracture length, decreasing with the fracture capacity. When invasion effects are simulated by decreasing the width of the damaged zone with distance from the well, the effect of formation damage around a fracture on the production response is not so serious as indicated by the literature. This suggests that frac fluids with a conventional filter-loss response are better than high-spurt-loss frac fluids, provided the effective permeability of the damaged zone is the same. Introduction This paper considers the effect of the fracture capacity, as well as the formation damage which can result from fracture treatments, on the productive capacity of vertically fractured wells. Other publications, notably those of van Poollen, consider these same effects. In addition to providing more general results for vertical fractures than are available from the literature, the present paper gives the equivalent well radius of fractures having different lengths and Capacities and, also, includes pressure distributions in and around the fractures. The effect of a damaged zone around a fracture on the production response was not found to be so great as that reported by van Poollen. This difference probably stems from the fact that we consider a damaged zone which is widest (but is still small) near the well and thins out toward the extremities of the fracture, whereas van Poollen considers a damaged zone having a uniform width for the entire fracture length. Simple, but adequate, equations which describe the effect of these variables on production response are presented (in Appendixes A and B). Thus, results can easily be extended to values of the variables not specifically considered here.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3