Global Component Lumping for EOS Calculations

Author:

Alavian Sayyed Ahmad1,Whitson Curtis Hays2,Martinsen Sissel O.1

Affiliation:

1. PERA

2. NTNU/PERA

Abstract

Abstract To reduce CPU time in compositional reservoir simulations, a minimum number of components should be used in the equation of state (EOS) to describe the fluid phase and volumetric behavior. A "detailed" EOS model often contains from 20 to 40 components, with the first 10 components representing pure compounds H2S, CO2, N2, C1, C2, C3, i-C4, n-C4, i-C5, and n-C5. The remaining components represent a split of the heavier C6+ material in single-carbon-number (SCN) fractions such as C6, C7, C8 and C9, or groups of SCN fractions such as C10-C12, C13-C19, C20-C29, and C30+. Occasionally the light aromatics BTX (benzene, toluene, and xylene isomers) are also kept as separate components for process modeling. Today's typical laboratory compositional analysis provides 50-60 components, including isomers with carbon numbers 6 to 10, SCN fractions out to C35 and a residual C36+. This is in contrast to the 11-12 components (through C7+) reported in most commercial laboratory reports pre-1980. A "pseudoized" EOS model might contain only 6-9 lumped components – e.g. lumping "similar" components such N2+C1, i-C4+n-C4+i-C5+n-C5, and some 3-5 C6+ fractions. The selection of which components to lump together is difficult because of the huge number of possible combinations. This paper describes a systematic, automated method1 to search a vast number of feasible pseudoized EOS models based on an initial, detailed EOS model. The obvious application of pseudoized EOS models is compositional reservoir simulation, where run time is an important issue and fewer components may be important. The method we present is based on (1) quantifying the "quality of match" between a pseudoized EOS model and the detailed EOS model from which it is derived, and (2) systematically testing all plausible lumping combinations. The method allows for a set of constraints to be imposed on the lumping of components, such as (1) not lumping certain non-hydrocarbons (e.g. CO2), (2) forcing the first plus fraction to contain a specific carbon-number component (e.g. C6), and (3) the last component in the original EOS not being lumped with other heavy fractions (e.g. C30+). The proposed pseudoization procedure is comprehensive, and founded in the ability of an EOS with fewer components to describe a wide range of phase and volumetric properties covering all of the relevant pressure-temperature-composition (p-T-z) space expected for a given reservoir development. The litmus test of quality is how well the pseudoized EOS compares with the detailed EOS model from which it is derived, an EOS that accurately describes all key measured laboratory PVT data. The method proposed will find an optimal pseudoized EOS model to describe all PVT data that are relevant to a particular reservoir development – e.g. depletion performance, immiscible and miscible gas injection, compositional variation, and surface processing.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3