On Improving Algorithm Efficiency of Gas-Kick Simulations toward Automated Influx Management: A Robertson Differential-Algebraic-Equation Problem Approach

Author:

Wei Chen1,Chen Yuanhang2

Affiliation:

1. Louisiana State University

2. Louisiana State University (Corresponding author)

Abstract

Summary Improved numerical efficiency in simulating wellbore gas-influx behaviors is essential for realizing real-time model-prediction-based gas-influx management in wells equipped with managed-pressure-drilling (MPD) systems. Currently, most solution algorithms for high-fidelity multiphase-flow models are highly time consuming and are not suitable for real-time decision making and control. In the application of model-predictive controllers (MPCs), long calculation time can lead to large overshoots and low control efficiency. This paper presents a drift-flux-model (DFM)-based gas-influx simulator with a novel numerical scheme for improved computational efficiency. The solution algorithm to a Robertson problem as differential algebraic equations (DAEs) was used as the numerical scheme to solve the control equations of the DFM in this study. The numerical stability and computational efficiency of this numerical scheme and the widely used flux-splitting methods are compared and analyzed. Results show that the Robertson DAE problem approach significantly reduces the total number of arithmetic operations and the computational time compared with the hybrid advection-upstream-splitting method (AUSMV) while maintaining the same prediction accuracy. According to the “Big-O notation” analysis, the Robertson DAE approach shows a lower-order growth of computational complexity, proving its good potential in enhancing numerical efficiency, especially when handling simulations with larger scales. The validation of both the numerical schemes for the solution of the DFM was performed using measured data from a test well drilled with water-based mud (WBM). This study offers a novel numerical solution to the DFM that can significantly reduce the computational time required for gas-kick simulation while maintaining high prediction accuracy. This approach enables the application of high-fidelity two-phase-flow models in model-prediction-based decision making and automated influx management with MPD systems.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3