Distributed Acoustic Sensing - A New Way of Listening to Your Well/Reservoir

Author:

Johannessen Kjetil1,Drakeley Brian2,Farhadiroushan Mahmoud3

Affiliation:

1. Statoil ASA

2. Weatherford International

3. Silixa Ltd.

Abstract

Abstract There is a new generation of in-well monitoring technologies that are being characterized under the Acoustic Energy sensing banner. Some are essentially disturbance or vibration event monitoring techniques but this paper describes a Distributed Acoustic Sensing (DAS) technology [1]. The subject sensing system uniquely allows the user to listen to the acoustic field at every point along many kilometers of fiber optic cable deployed in the well. With a spatial resolution of 1 meter, for example, there will be 10,000 synchronized sensors along a 10,000 meter fiber. The system uses a novel digital optical detection technique to precisely capture the true full acoustic field (amplitude, frequency and phase over a wide dynamic range) at every point simultaneously. A number of signal processing techniques have been developed to process a large array of acoustic signals to quantify the coherent temporal and spatial characteristics of the acoustic waves. Potential in-well monitoring applications have been identified, and significant benefits are predicted for optimizing and maximizing production in many types of oil and gas fields by facilitating informed decisions. The system can be retrofitted to existing installations of permanent in-well fiber optics based monitoring systems with the addition of surface instrumentation. New installations are also planned. The paper also describes the background technology with focus on full reconstruction of the acoustic signal along the well bore, sensing system capabilities and the results of field trial surveys, with first generation instrumentation in seven offshore Norwegian Continental Shelf wells. These seven offshore wells already contained in-well fiber optics sensing systems, and comprised of two water injectors, one gas injector, three producers with gas lift valves, and one high rate Gas Oil Ratio producer. Installed sensing included Bragg grating based Pressure and Temperature gauges and fiber based flow meters. DAS measurements were recorded on fibers with both types of sensors installed on the same fibers. An acoustic signal for flowing wells was obtained in all cases and for most of the wells it was possible to also extract qualitative information on the flow regime, speed of sound and an estimate for flow velocity in at least parts of the wells.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3