Using New Intervention-less Surveillance Technology to Optimize the Implementation of Waterflood

Author:

Al Anbari Ali1,Al Harthi Mahmood1,Choudhury Suryyendu1,Borkent Evert-Jan1,In ‘T Panhuis Petrus1,Hemink Gijs1,Al Yahmadi Mundhr1,Abdul Abbas Hawra1,Morianta Marpaung1

Affiliation:

1. Petroleum Development Oman

Abstract

Abstract The value of implementing intervention-less downhole surveillance technology lies in early assessment of field-scale reservoir performance and well deliverability in South Oman's largest waterflood development. Such technology can aid in assessing whether aquifer support by means of (controlled) fracture injection is achievable, which is potentially more valuable than matrix injection to enhance oil production. At the same time HSSE exposure and deferment will be reduced by avoiding well interventions. This paper will share learnings from Distributed Fiber-Optic (FO) Sensing technology. More specifically, this paper will present the case study of field ‘A’, where waterflood is being operated in two methods based on sectors depending on field geological and reservoir properties: ‘Deep’ water injection in the aquifer, under fracture conditions ‘Shallow’ water injection close to the oil-water-contact (OWC), under matrix conditions ‘Deep’ water injection minimizes the risk of early water breakthrough, but it delays the aquifer pressure support which in turn means lower offtake. The ‘Shallow’ water injection (trialed by injecting water 50m below OWC) has a higher risk of water short circuiting, accelerates pressure support and thereby enhances production / well deliverability. Fiber-optic data is part of a decision-based surveillance program, which also included injection / production logging via PLT, step-rate tests, and pressure monitoring. The time-lapse data has illustrated some fracture growth up- and downwards of the perforation interval in most wells but is still contained below the OWC. In some wells, the injection growth is also controlled by the presence of several intra-reservoir shale baffles that are acting as barriers to vertical communication and thereby delaying the injection response while inducing a strong pressure response in nearby producers. The data has helped to further calibrate and validate the model assumptions and will help in optimizing the waterflood development concept for the field. Proactive interventional-less surveillance enables monitoring of the zonal injection conformance, provides advantage of learning reservoir performance and supports agile WRFM operations and decision making. Furthermore, cost competitive and credible technology have made PDO a front runner to keep subsurface risk at as low as reasonably practical levels and boost oil production. This distributed fiber optic sensing technology provided cost-effective, fit-for-purpose, and intervention-less well-and-reservoir surveillance.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3