A Comprehensive Model for Simulating Supercritical-Water Flow in a Vertical Heavy-Oil Well

Author:

Gao Jiaxi1,Yao Yuedong2,Wang Dawen3,Tong Hang3

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, and Exploration and Development Technology Research Institute, Yanchang Oil Field Company Limited

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (Corresponding author)

3. Exploration and Development Technology Research Institute, Yanchang Oil Field Company Limited

Abstract

Summary Supercritical water has been proved effective in heavy-oil recovery. However, understanding the flow characteristics of supercritical water in the wellbore is still in the early stages. In this paper, using the theory of heat transfer and fluid mechanics and combining that with the physical properties of supercritical water, a heat-transfer model for vertical wellbore injection with supercritical water is established. The influence of heat transfer and the Joule-Thomson effect on the temperature of supercritical water are considered. Results show the following: The predicted values of pressure and temperature are in good agreement with the test values. The apparent pressure of supercritical water at the upper end of the wellbore is lower than the apparent pressure at the lower end. However, the equivalent pressure of supercritical water at the upper end of the wellbore is higher than the equivalent pressure at the lower end. The apparent pressure of supercritical water is affected by three factors: flow direction, overlying pressure, and Joule-Thomson effect. The closer to the bottom of the well, the greater the overlying pressure of the supercritical water, resulting in an increase in apparent pressure and the density of the supercritical water. As the injection time for supercritical water increases, the temperature around the upper horizontal wellbore increases.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3