Field Proven Effectiveness of Near Wellbore and Far Field Diversion in Acid Stimulation Treatment Using Self-Degradable Particulates

Author:

Malik Ataur R.1,Asiri Mohammed A.2,Bolarinwa Simeon O.2,Guizada Pablo H.2,Driweesh Saad M.2,Buali Muhammad H.2,Shammari Nayef S.2,Khalifa Mohamed3

Affiliation:

1. Dmitrii Gromakovskii

2. Saudi Aramco

3. Halliburton

Abstract

Abstract In acid stimulation treatments, acid will enter the most permeable or the least damaged zones. Most of the fluid will flow into the path of least resistance leaving large portions of the formation untreated. A critical factor to the success of an acid stimulation treatment is proper placement of acid so that all productive intervals are contacted by sufficient volumes of acid. The original stimulation fluid flow was altered to achieve uniform placement of treatment fluids during acid stimulation in candidate wells. Particle bridging technique utilizing self-degrading particulates of multiple grain sizes was utilized to achieve successful diversion and fluid placement across the entire interval of interest. Particle size distribution was calibrated for use with both near wellbore bridging across perforations and far field diversion inside wormholes and natural fractures. For self-degradable particulates to be successful as effective diverter, it should have accurate particle size distribution, therefore, a comprehensive well data analysis performed during design stage to recognize the opportunity for combination of far-field and near wellbore diversion systems for acid stimulation treatment. The combination of far-field and near wellbore self-degrading particulate diversion systems allowed the entire intervals to be treated evenly under matrix and fracture conditions, which is usually hard to achieve during acid stimulation treatments utilizing conventional chemical diversion systems, especially in cases where separate sets of perforations would need to be treated with a single stage. Evaluation of the diversion effectiveness was done by running temperature log immediately after the stimulation, which demonstrated satisfactory cool down effect across perforation intervals. This diversion technique was found to be more enhanced to effectively acid stimulate in high temperature carbonate reservoirs of Saudi Arabia. The utilization of self-degrading particulates of various grain sizes for far-field and near wellbore diversions during acid stimulation in high temperature carbonate reservoir was a unique approach and can be further optimized to resolve the challenges of multistage acid stimulation treatments.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3