Time-Dependent Fracture-Interference Effects in Pad Wells

Author:

Manchanda R..1,Sharma M.M.. M.1,Holzhauser S..2

Affiliation:

1. University of Texas at Austin

2. Shell

Abstract

Summary Hydraulic fracturing in shale formations induces microseismic events in a region we refer to as the microseismic volume. Many of these microseismic events are signatures of failure in the formation that are believed to be a result of induced unpropped (IU) fractures beyond the primary propped fracture. Areally extensive microseismicity may be evidence that these IU fractures occur and extend spatially beyond the propped fracture during pumping in many unconventional reservoirs. We present evidence that these fractures close over time after pumping is stopped and that this closure of IU fractures can have a significant impact on stress interference between fractures. To illustrate these effects, microseismic and radioactive-tracer data are presented for four laterals drilled and fractured from a single pad. Two wells on this pad were fractured with the consecutive-fracturing sequence, and the other two wells were fractured with the zipper-fracturing sequence. Geomechanical simulations were performed to model the pad scenario and explain the microseismic and tracer observations, with emphasis on the two different fracturing sequences. Our simulations show that the opening of the IU fractures results in significant temporary changes to the stress field in the rock. One consequence of this is that later fracture stages tend to propagate into the open-fracture networks of IU fractures created earlier because of stress reorientation. This can lead to inefficient usage of fluid, proppant, and capital because the region that is being stimulated has already been stimulated by the previous stage. By analyzing the net pressure, radioactive-tracer data, and microseismic data from the four-well pad, we show that these IU fractures close over time because the fracture fluid leaks off. This reduces the stress shadow, and subsequent induced fractures are no longer subjected to the significantly altered stresses, allowing for more-efficient fracture-network coverage by subsequent fractures in a horizontal well. On the basis of the data presented and computer simulations, we propose the idea of maximizing the time between fracturing in the microseismic volume of a recently fractured region (within operational constraints). The time required for the IU fractures to close can be estimated from our models and varies on the basis of the reservoir and fluid properties from several hours to days. One example of how this is accomplished in practice is zipper fractures. However, our work suggests that there also may be other fracture-sequencing strategies for accomplishing this.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3