Affiliation:
1. Federal University of Espírito Santo
2. Petrobras
Abstract
Abstract
Petrobras has faced several challenges concerning inorganic scaling in the Pre-salt cluster. Scale prediction plays an important role on well completion selection and supporting to define better alternatives for chemical injection location. However, predicting scale in wellbores is traditionally performed based on thermodynamical equilibrium of the formation water under static conditions. This strategy leads to conservative results since it neglects hydrodynamics and kinetics of the scaling process. This paper proposes a new approach to predict scaling in downhole conditions. The study seeks to contribute on the comprehension of the effect of fluid flow and equipment geometry variation in the crystal deposition process in intelligent well completion equipment.
Such completion devices act in managing the fluid flow influx from different reservoirs or multiple zones of the same reservoir. Despite the positive aspects of this technology, some authors have been pointing out some problems associated with specific applications of these tools. The most common issues are related to the considerable pressure differential and the occurrence of calcium carbonate (CaCO3) scale. The pressure drop in this tool induces the flash liberation of CO2 from the aqueous solution. Consequently, the chemical equilibrium is displaced towards the direction of precipitation of CaCO3 in the flow stream. This paper proposes a new approach to predict scaling in downhole conditions and aims to quantitatively evaluate the calcium carbonate precipitation on the smart completion element internal surfaces. Computational Fluid Dynamics (CFD) along with discrete phase modeling (DPM) is employed to simulate the transport and adhesion of the calcium carbonate crystals on the device. The valves geometries consider the main features observed on the field according to different suppliers, accounting the different possibilities of completion geometries for Brazilian Pre-Salt environment.
The results showed the tendency of scale deposition pointing out hot spots in several different completion accessories at downhole conditions. A better understanding of the scale potential has influenced the decision-making process on the completion design and workover alternatives in the Pre-salt wellbores.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献