Integrating Reservoir Modelling, High-Precision Temperature Logging and Spectral Noise Logging for Waterflood Analysis

Author:

Al Marzouqi A. R.1,Keshka A..1,Bahamaish J. N.1,Aslanyan A..2,Aslanyan I..2,Filenev M..2,Barghouti J..2,Sudakov V..2,Andreev A..2

Affiliation:

1. Tareq Al Junaibi (ADCO)

2. (TGT Oil & Gas Services)

Abstract

Abstract Today, geological and hydrodynamic models are widely used for efficient development and monitoring of oil and gas fields. These models are designed to handle a wide range of tasks. Their reliability directly affects the quality of results and any uncertainties should, therefore, be minimised. The use of additional techniques can enhance the reliability and predictive ability of the models and minimise risks. This paper describes how integrating accurate description of flow geometry with reservoir properties and reservoir models to achieve this objective and, to generate a more reliable picture of the reservoir performance. The study included running HPT-PLT-SNL high precision logging tools, and covered a pilot area with five wells in a Cretaceous carbonate reservoir. The wells were completed in the lower and tighter Sub-reservoirs units F1 and F2 and the objective of this pilot is to identify the flow geometry in wells’ neighborhood, particularly identify channeling, fracture flows or other types of communication. The objective of the associated simulations and study is to correlate the acquired and interpreted data with those suggested by simulations and come up with consistent description of reservoir flow geometry within the pilot pattern. The most challenging point of this flooding campaign is the complexity of the reservoir in this area. The flooding pilot sets the targets for tight Sub-reservoir carbonates Unit F1 and Unit F2. It's important to know if the flow ensues exactly within these units and does not communicate with other reservoirs with better permeability.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3