Smart-Well Production Optimization Using an Ensemble-Based Method

Author:

Su Ho-Jeen1,Oliver Dean S.2

Affiliation:

1. Saudi Aramco

2. University of Oklahoma

Abstract

Summary Ensemble methods have been applied successfully in assisted history matching and in production optimization. In history matching, the ensemble Kalman filter (EnKF) has been used to estimate the values of hundreds of thousands of variables from various types of data. In production optimization, an ensemble-based method has been used to estimate optimal control settings for problems with thousands of control variables. In both cases, relatively small numbers of random realizations are used to compute update directions for improving estimates. In this paper, we illustrate the application of the ensemble-based optimization on two fairly complex problems that would be difficult to handle by other methods. In the first example, we show its application to optimize inflow-control-valve (ICV) settings on two horizontal wells in a sector model of 200,000 cells. One hundred layers were used in the reservoir model to capture geological heterogeneity. The two wells were drilled parallel to the edgewater boundary. The optimization objective in this example is to minimize cumulative water production over a 10-year production period while maintaining a constant liquid-production rate. Results after only five optimization iterations with improved control-valve settings showed a 50% reduction in cumulative water production. The fully automated optimization process was completed within a few hours under a parallel-computing environment. The ensemble-based method was also applied successfully to a 3D case consisting of 10 multilateral wells with ICVs installed at each lateral junction. The interaction of various laterals is difficult to visualize, but the optimization algorithm was again successful in reducing water production. In this example, we demonstrate that proper choice of control variables can be important to the success of the optimization.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3