How to Achieve Project and Operational Certainty Using a Digital Twin

Author:

Douglas Alistair1,Rios Vicente2

Affiliation:

1. Total E&P UK Limited

2. Emerson Automation Solutions

Abstract

Abstract A Digital Twin is a software representation of a facility which can be used to understand, predict, and optimize performance to help to achieve top performance and recover future operational losses. The Digital twin consists of three components: a process model, a set of control algorithms, and knowledge. Usually the time for commissioning a project exceeds the initial estimations, therefore delays in project completion are quite common. This is often because ICSS testing is done on a static system which does not account for how the system will react dynamically to certain scenarios such as start-ups and shutdowns. Issues such as configuration errors, loop behaviors, start-up over-rides, dead-lock inter-trips and sequence logic are difficult to predict and are impossible to anticipate during static testing. Such delays lead to higher costs and therefore reduced revenue. This paper aims to describe the most innovative approach to Project & Operational Certainty, which addresses these issues by using a Digital Twin for commissioning support and training. One successful use of this approach was in the Culzean project, an ultra-high-pressure high temperature (UHP/HT) gas condensate development in the UK sector of the Central North Sea. A high-fidelity process model was built and fitted to the actual plant performance based on equipment data sheets. This was connected to ICSS database and graphics, offering a realistic environment, very close to the one offshore, which had the same look and feel for the operators. Dynamic tests conducted on the Digital Twin predicted issues on the real system, which enabled potential solutions to be tested, leading to a significant decrease in the time spent and cost during commissioning. All the operating procedures were dynamically tested, which enabled us to correct errors, saving time before First Gas. Additionally, all CRO (Control Room Operators) and field technicians were trained and made familiar with the system months in advance, aiming to avoid future unnecessary trips during First Gas. Finally, all the control loops were fine tuned in the Digital Twin and parameters were passed to off shore, to be used as first starting point. It is expected that these parameters will be very close to fine operational points, as the model used is high fidelity model and very close to real system offshore.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3