Linear and Nonlinear Controls of Wireline Logs on Automated Grain Size Estimation Using Machine Learning Approach

Author:

Anifowose Fatai Adesina1,Alshahrani Saeed Saad1,Mezghani Mokhles Mustafa1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Wireline logs have been utilized to indirectly estimate various reservoir properties, such as porosity, permeability, saturation, cementation factor, and lithology. Attempts have been made to correlate Gamma-ray, density, neutron, spontaneous potential, and resistivity logs with lithology. The current approach to estimate grain size, the traditional core description, is time-consuming, labor-intensive, qualitative, and subjective. An alternative approach is essential given the utility of grain size in petrophysical characterization and identification of depositional environments. This paper proposes to fill the gap by studying the linear and nonlinear influences of wireline logs on reservoir rock grain size. We used the observed influences to develop and optimize respective linear and machine learning models to estimate reservoir rock grain size for a new well or targeted reservoir sections. The linear models comprised logistic regression and linear discriminant analysis while the machine learning method is random forest (RF). We will present the preliminary results comparing the linear and machine learning methods. We used anonymized wireline and archival core description datasets from nine wells in a clastic reservoir. Seven wells were used to train the models and the remaining two to test their classification performance. The grain size-types range from clay to granules. While sedimentologists have used gamma-ray logs to guide grain size qualification, the RF model recommended sonic, neutron, and density logs as having the most significant grain size in the nonlinear domain. The comparative results of the models' performance comparison showed that considering the subjectivity and bias associated with the visual core description approach, the RF model gave up to an 89% correct classification rate. This suggested looking beyond the linear influences of the wireline logs on reservoir rock grain size. The apparent relative stability of the RF model compared to the linear ones also confirms the feasibility of the machine learning approach. This is an acceptable and promising result. Future research will focus on conducting more rigorous quality checks on the grain size data, possibly introduce more heterogeneity, and explore more advanced algorithms. This will help to address the uncertainty in the grain size data more effectively and improve the models performance. The outcome of this study will reduce the limitations in the traditional core description and may eventually reduce the need for extensive core description processes.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3