Laboratory Studies of Microscopic Dispersion Phenomena

Author:

Blackwell R.J.1

Affiliation:

1. Humble Oil & Refining Co.

Abstract

Abstract This paper presents the results of a laboratory investigation of the process by which one fluid is displaced from a porous medium by a second fluid which is miscible with the first. The study included investigations of the microscopic mixing processes and of the gross displacement behavior. The results of this study are useful in scaling small bench-scale models or reactors to represent larger systems such as oil reservoirs or large, fixed bed reactors. Mixing in both the direction of flow and perpendicular to the direction of flow was measured in sand-packed columns. Dispersion coefficients were calculated from data obtained over a range of rates for various fluid pairs and sand-grain sizes. The data are presented by plotting the ratios of the dispersion coefficients divided by the molecular diffusivity vs a dimensionless parameter relating the forward transport by convection to lateral transport by diffusion. It was found that both longitudinal and lateral mixing are governed by molecular diffusion at low rates and by convection at high rates. At high rates, however, the lateral dispersion coefficients are about 1/24th those in the longitudinal direction. The ratio of lateral to longitudinal dispersion coefficients is compared with that predicted by various mathematical models of the pore system in a packed bed. The use of dispersion coefficients in scaling laboratory models to represent solvent floods in oil reservoirs is discussed briefly. Introduction The physical processes involved in the displacement of one fluid from a porous medium by a second fluid which is miscible with the first are fundamentally important in many diverse fields. For example, chemical engineers have been particularly concerned with the relationship of such fundamental aspects of displacement processes as the distribution of heat and mass, and the effect of fluid mixing on reactor efficiency. The specific problem of fluid mixing in fixed bed reactors has been investigated by Bernard and Wilhelm and others. Because high reactor efficiencies often require turbulent motion of the fluids within the individual flow channels of the porous medium, the emphasis in most of these studies has centered on fluid mixing in the turbulent or almost turbulent flow regimes. The mixing between miscible fluids in the laminar flow regime at very low Reynold's numbers is of particular interest in the field of and in recovery of oil.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3