Buildup Evaluation of a Tight Overpressured Naturally Fractured Carbonate Reservoir with the Use of a Semi-Empirical Model

Author:

Azuara Diliegros Brenda1ORCID,Aguilera Roberto2ORCID

Affiliation:

1. Schulich School of Engineering, University of Calgary; Now with Pemex, Villahermosa, Tabasco, Mexico

2. Schulich School of Engineering, University of Calgary (Corresponding author)

Abstract

Summary This paper examines the buildup (BU) pressure response of a vertical well that penetrates an unconventional tight naturally fractured carbonate reservoir in Mexico. Four BUs in the same well over a period of 4 months, with intermediate flow periods, suggest partial closure of natural fractures. Radial flow is dominant in the four BUs. This is recognized in semilogarithmic and pressure derivative crossplots. However, the formulations require a consistent empirical component to match the BU data. The four BU tests are evaluated with a semi-empirical dual porosity model with restricted interporosity flow. The restricted flow between matrix and fractures is the result of partial secondary mineralization (cementation) within the fractures, which can be visualized as a natural positive skin that reduces the oil flow from the matrix to the fractures. The empirical part of the method is provided by a severity exponent (SE), which helps improve the match between the BU semilog and derivative plots. The BU evaluations permit estimating several parameters of interest, including fracture capacity (k2·h), skin, storativity ratio (ω), and the extrapolated pressure (p*). Results suggest that although natural fractures are present, they tend to close once the well goes on production. Thus, the conclusion is reached that the carbonate reservoir is tight and likely stress dependent. The calculated skin goes from an improved condition around the wellbore to slightly damaged conditions, probably due to fracture closure. The value of ω increases continuously, suggesting a tendency of the reservoir to move from dual to single porosity behavior. The reservoir is overpressured (0.87 psi/ft) and the extrapolated pressures (p*) decrease because of the tight characteristics of the reservoir. However, given the large size of the reservoir, the likelihood of depletion is low. The novelty of this study is the development of a new easy-to-use semi-empirical well testing model for matching the BU pressure response of four tests performed in a well that penetrates an overpressured, unconventional, tight, naturally fractured carbonate reservoir. The tests could not be matched with conventional methods currently available in the literature.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3