Affiliation:
1. West Virginia University
Abstract
Summary
Multistage hydraulic fracturing has become the key technology to complete horizontal wells in shale-gas reservoirs. In each stage, multiple perforation clusters are used to create multiple transverse fractures. How these clusters are placed significantly affects both the short-term and long-term production performance of horizontal shale-gas wells. The author's previous work has demonstrated that when more than two fractures are created, mechanical interaction among fractures creates strong stress concentrations around the inner fractures. As a result, the fractures between two edge fractures (i.e., subcenter and center fractures) experience only limited dilation, and their widths are much smaller than the edge-fractures’ width.
In this paper, reservoir-simulation models were constructed by quantitatively incorporating the findings of the author's previous work to investigate the impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale-gas wells. The paper illustrates that with the same cluster spacing, the scenarios with more clusters have lower ultimate gas recovery because of the increased number of less-effective inner fractures. Given the same lateral length of a horizontal well, although reducing cluster spacing increases the total number of fractures, smaller cluster spacing does not necessarily improve well performance. Inadequate small cluster spacing can actually lead to a greater number of less-effective or ineffective fractures, and, therefore, lower gas rate and ultimate recovery.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献