Impacts of the Number of Perforation Clusters and Cluster Spacing on Production Performance of Horizontal Shale-Gas Wells

Author:

Cheng Y..1

Affiliation:

1. West Virginia University

Abstract

Summary Multistage hydraulic fracturing has become the key technology to complete horizontal wells in shale-gas reservoirs. In each stage, multiple perforation clusters are used to create multiple transverse fractures. How these clusters are placed significantly affects both the short-term and long-term production performance of horizontal shale-gas wells. The author's previous work has demonstrated that when more than two fractures are created, mechanical interaction among fractures creates strong stress concentrations around the inner fractures. As a result, the fractures between two edge fractures (i.e., subcenter and center fractures) experience only limited dilation, and their widths are much smaller than the edge-fractures’ width. In this paper, reservoir-simulation models were constructed by quantitatively incorporating the findings of the author's previous work to investigate the impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale-gas wells. The paper illustrates that with the same cluster spacing, the scenarios with more clusters have lower ultimate gas recovery because of the increased number of less-effective inner fractures. Given the same lateral length of a horizontal well, although reducing cluster spacing increases the total number of fractures, smaller cluster spacing does not necessarily improve well performance. Inadequate small cluster spacing can actually lead to a greater number of less-effective or ineffective fractures, and, therefore, lower gas rate and ultimate recovery.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3