Enhanced-Velocity-Multiblock Method for Coupled Flow and Reactive-Species Transport Through Porous Media: Applications to Bioremediation and Carbon Sequestration

Author:

Thomas S.G.. G.1,Wheeler M.F.. F.1

Affiliation:

1. University of Texas at Austin

Abstract

Summary This paper presents a multiblock-discretization method—the enhanced-velocity mixed-finite-element method (EVMFEM) (Wheeler et al. 2002)—for coupled multiphase flow and reactive-species-transport modeling in porous-media applications. The method provides local mass balance and a continuous approximation of fluxes across interfaces of elements and subdomains. It can treat nonmatching grids, allowing for a flexible choice of grid refinements. Further, by distributing the blocks among processors such that each block has approximately the same number of elements, this method can be implemented efficiently in parallel, thereby offering further reductions in computational cost. The paper also presents recent application of EVMFEM to challenging problems such as compositional flow simulations of CO2 sequestration. Tests with EVMFEM suggest that it is advantageous to apply grid refinements around wells and to areas in which dynamics of chemical-species concentration is highest. Allowing for variable grid refinements greatly reduces the simulation cost, while preserving overall accuracy of the solution. For completeness, a few significant analytic results on convergence of the method are stated and referenced, omitting proof. This work is significant in advancing the discretization and application of EVMFEMs in reservoir-simulation development. Problems such as transport of chemical species in multiphase flow and CO2 sequestration have begun to assume significant importance in decisions regarding the preservation of our environment and in the safe and reliable means of delivering energy. This paper offers useful methods and some innovative future directions to address the huge computational costs involved in solving such complex problems.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Waste disposal;Petroleum Engineer's Guide to Oil Field Chemicals and Fluids;2021

2. A space–time domain decomposition approach using enhanced velocity mixed finite element method;Journal of Computational Physics;2018-12

3. Waste disposal;Petroleum Engineer's Guide to Oil Field Chemicals and Fluids;2015

4. Modeling and simulation of carbon sequestration at Cranfield incorporating new physical models;International Journal of Greenhouse Gas Control;2013-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3