Characterizing Pores and Pore-Scale Flow Properties in Middle Bakken Cores

Author:

Karimi Somayeh1,Kazemi Hossein1

Affiliation:

1. Colorado School of Mines

Abstract

Summary To understand the flow and transport mechanisms in shale reservoirs, we needed reliable core-measured data that were not available to us. Thus, in 2014, we conducted a series of diverse experiments to characterize pores and determine the flow properties of 12 Middle Bakken cores that served as representatives for unconventional low-permeability reservoirs. The experiments included centrifuge, mercury-intrusion capillary pressure (MICP), nitrogen adsorption, nuclear magnetic resonance (NMR), and resistivity. From the centrifuge measurements, we determined the mobile-fluid-saturation range for water displacing oil and gas displacing oil in addition to irreducible fluid saturations. From MICP and nitrogen adsorption, we determined pore-size distribution (PSD). Finally, from resistivity measurements, we determined tortuosity. In addition to flow characterization, these data provided key parameters that shed light on the mechanisms involved in primary production and the enhanced-oil-recovery (EOR) technique. The cores were in three conditions: clean, preserved, and uncleaned. The hydrocarbon included Bakken dead oil and decane, and the brine included Bakken produced water and synthetic brine. After saturating the cores with brine or oil, a set of drainage and imbibition experiments was performed. NMR measurements were conducted before and after each saturation/desaturation step. After cleaning, PSD was determined for four cores using MICP and nitrogen-adsorption tests. Finally, resistivity was measured for five of the brine-saturated cores. The most significant results include the following: Centrifuge capillary pressure in Bakken cores was on the order of hundreds of psi, both in positive and negative range. Mobile-oil-saturation range for water displacing oil was very narrow [approximately 12% pore volume (PV)] and much wider (approximately 40% PV) for gas displacing oil. In Bakken cores, oil production by spontaneous imbibition of high-salinity brine was small unless low-salinity brine was used for spontaneous imbibition. Resistivity measurements yielded unexpectedly large tortuosity values (12 to 19), indicating that molecules and bulk fluids have great difficulty to travel from one point to another in shale reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3