Abstract
Abstract
This paper describes a game-changing solution regarding the use of metal expandable annular sealing systems in a high pressure multistage frac well. The design and engineering of this technology resulted in the development of fit-for-purpose equipment that overcame challenges often encountered in a high-pressure stimulation environment. The metal expandable annular sealing system was custom designed in order to provide high expansion that can be set in potentially washed out wellbores. The design included a long multi-element sealing system with built-in redundancy to account for fracturing fluid chemical reaction with the rock behind the seals.
The system is just under 4 meters, complemented with multi-elastomer seals, each delivering full Delta P capability within a washed-out hole up to 6.5". The unique design allows full rotational capabilities during deployment, minimizing operational risks.
The system was run in combination with multi open-close fracturing sleeves and a pressure activated toe sub rated to 10,000 psi for acid fracturing in three zones of a vertical carbonate well – the well was known for its heterogeneity and high reservoir pressure contrast. The use of mechanical packers with short sealing elements would have been challenging and increases the risk of unwanted communication between zones. Successful installations, activation of the sleeves and subsequent hydraulic fracturing were achieved, which enabled operational flexibility, reliable isolation and high expansion benefits. Acid fracturing treatment data from each of the stages were analyzed and used to confirm that the zonal isolation integrity.
This paper includes the challenges of providing zonal isolation with conventional packer designs and details the design, testing and qualification of the solution as well as further design modifications for higher fracturing pressure rating.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献